Prompt X-Rays from Fast-Neutron-Induced Fission of ²³⁸U

Ron Nelson

Los Alamos Neutron Science Center – Nuclear Science Los Alamos National Laboratory

FIESTA 2014

September 10-12, 2014 Santa Fe, NM

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Outline

- Introduction History Fission K X-Ray Properties
- LANSCE WNR Facility
- GEANIE & Fission Fragment Detectors
- X-Ray Spectra and Yields
- Calculations
- Charge Yields
- Future
- Acknowledgements

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Fission X-Rays a Very Brief History

- 1960-70's Reisdorf, Griffin, Wilhelmy measurements for spontaneous fission and thermal neutron induced fission only
 1965 Glendinin and Griffin calculated K x-ray yields
- Internal Conversion not fission acceleration ionization!
- Produced by levels with strong internal conversion means odd mass and odd-Z-odd-N nuclei favored
- Provide Z identification
- Complements gamma-ray studies that are most sensitive to eveneven nuclei via 2⁺ – 0⁺ observations
- LANSCE with CEA-Bruyeres, first measurements on ²³⁸U(n,f) with fast neutrons

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Overview of the LANSCE/WNR Facility Showing the Beam Structure and Neutron Flux

WNR Spallation Neutron Source

- Intense high-energy "white" neutron source
- $0.1 < E_n < 400 \text{ MeV}$
- Time-of-flight for efficient excitation function acquisition

1000

100

10

100

En (MeV)

4725 μs**→**

Typical WNR Proton Beam Parameters

8.3 ms

Slide 4

1000

GEANIE – Germanium Array for Neutron-Induced Excitations at LANSCE

- Located at the WNR spallation neutron source – driven by the 800 MeV LANSCE proton linac
- Neutron energy is determined by timeof-flight on a 20 meter flight path
- Typical neutron energy range is
- 1 < En < 200 MeV
- Both 25% coaxial HPGe detectors and low-energy planar HPGe detectors are used.
- Typical gamma-ray energy range 15 keV < Eg < 4 MeV
- Built on the former HERA array from Lawrence Berkeley National Laboratory

Multiple Solar Cell Fission Fragment Detectors Were Used with ²³⁸U Deposited by Mass Separator (CEA)

- 11 low energy photon spectrometers for x-ray detection
- 15 coaxial Ge detectors for γ ray detection
- 8 ²³⁸U deposits on thin solar cells in the WNR neutron beam as an active target
- Fission-photon coincidences required to eliminate high backgrounds at Eγ<50 keV

Si solar cells (< 100 μ m)

```
U deposits (~1 mg/cm<sup>2</sup>)
```

Neutron Beam

Slide 6

X-Ray Spectra for Lighter-Mass Fission Fragments

X-Ray Spectra for Higher-Mass Fission Fragments

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Fission Fragment K X-Ray Decay Properties

- For our data, measured on 100 ns time scale, <u>mainly E2</u>, <u>M1 transitions</u> contribute significantly to the observed Kshell x-ray yields
- Internal conversion rate is small for E1 transitions
- Decay time is much longer for higher multipoles and conversion is much less for higher gamma energies
- Odd-even staggering is observed, especially for heavier fragments

²³⁸U(n,f) Mass Yield Distributions vs E_n (for lodine) Provide a View into Different Masses with changing E_n

Wahl Fission Fragment Systematics Compared with GEANIE Gamma-Ray Yield Data for ²³⁸U(n,f) vs E_n

Operated by Los Alamos National Security, LLC for the DOE/NNSA

https://www-nds.iaea.org/publications/tecdocs/sti-pub-1286/

Measured K X-Ray Yields vs Atomic Number for Five Incident Neutron Energy Bins from 3 to 180 MeV

Slide 12

Calculations of X-Ray Yields from Energy Levels, Fission Yield Systematics, and other data

- Calculated K Yield = Sum over all known (NUDAT) IC levels (α/(1+α) weighted by systematic (Wahl) mass yields * branching * lifetime factor * fluorescent yield
- Consider the case of a single low-lying state with large internal conversion coefficient
 - Typically have large feeding from higher levels
 - For ease of calculations assume 100% population
 - But, may be less due to isomers, feeding patterns
 - Multiple x-ray emission is possible
- Estimated uncertainties in calculations include only IC coefficient and mass yield uncertainties

Operated by Los Alamos National Security, LLC for the DOE/NNSA

E_n=3 MeV Measured and Calculated K X-Ray Yields

- Data greater than calculation missing IC levels
- Data less than calculation 100% feeding not true

E_n=8 MeV Measured and Calculated K X-Ray Yields

E_n=14 MeV Measured and Calculated K X-Ray Yields

Operated by Los Alamos National Security, LLC for the DOE/NNSA

E_n=32 MeV Measured and Calculated K X-Ray Yields

Slide 17

E_n=180 MeV Measured and Calculated K X-Ray Yields

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Reisdorf ²⁵²Cf Spontaneous Fission K Yields

K X-ray yields for thermal fission of ^{233,235}U, ²³⁹Pu, & spontaneous fission of ²⁵²Cf

Fig. Top: Mean K X-ray emission probabilities per fragment of charge Z (K(Z)) obtained by Reisdorf *et al.* [4] for ²⁵²Cf spontaneous fission (circles), ²³⁵U(n,f) (squares), ²³³U(n,f) (triangles) and ²³⁹Pu(n,f) (diamonds). Bottom: Ratio of K(Z) in ²⁵²Cf spontaneous fission (circles), ²³³U(n,f) (triangles) and ²³⁹Pu(n,f) (diamonds) to K(Z) for ²³⁵U (data from ref. [4]).

Charge yields inferred from K X-ray yields

Inferred charge yields for 180 MeV

Fig. Charge distributions determined from the X-ray yield measurements (symbols). Top: threshold–6 MeV, $\langle E_n \rangle \simeq$ 3 MeV. Bottom: 6–11 MeV, $\langle E_n \rangle \simeq$ 8 MeV. Solid error bars correspond to propagated fit errors, dotted error bars correspond to the sum in quadrature of the fit error and the 50% relative uncertainty associated with K(Z). Dashed curve is the result of the GEF code by Schmidt-Jurado [43] (see text). Solid curve within hatched area corresponds to Wahl systematics and associated uncertainty obtained for the corresponding energy ranges.

Eur. Phys. J. A (2013) 49:114

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Future

- High-energy neutron-induced fission of actinides provides a window for spectroscopy of a range of neutron-rich nuclei
- X-ray gamma-ray coincidences can provide new information on energy levels of specific neutron rich nuclei
- Fission X-ray-gamma-ray coincidence experiments have been proposed using increased actinide mass in a fission counter to enable x-ray-gamma-ray coincidence studies with sufficient statistics

Operated by Los Alamos National Security, LLC for the DOE/NNSA

Acknowledgements

- CEA Bruyeres-le-Chatel
 - **T. Granier**, T. Ethvignot (present address OTICE ONU, Vienna, Austria)
- Lawrence Livermore National Laboratory
 - P. Garrett (present address U. of Guelph), W. Younes
- Los Alamos National Laboratory
 - R. Nelson, M. Devlin, N. Fotiades
- Special thanks to A. Sonzogni for providing NUDAT data for internal conversion states

Operated by Los Alamos National Security, LLC for the DOE/NNSA

