Microscopic Calculations
 of Fission Barriers in the Actinide Region

Koh Meng Hock (UTM, CENBG),
L. Bonneau, P. Quentin (CENBG), H. Wagiran (UTM)

FIssion ExperimentS and Theoretical Advances Santa Fe, New Mexico

10-12 September 2014

INTRODUCTION

AIM OF RESEARCH

- calculation of fission barrier heights of odd-mass nuclei in the actinide region
- dependence of the inner barrier height on the K^{π} quantum numbers (assuming K is conserved along fission process)
- study of the energy spectra in the ground-state and fission-isomeric wells and transition (discrete) states at the top of the first barrier

2/14

Microscopic Approach To Odd NUCLEI

Hartree-Fock (HF) Plus pairing (BCS)

- breaking of time-reversal symmetry (due to the addition of one unpaired nucleon)
- proper account of the effect through self-consistent blocking (SCB) calculations
- vs. the Equal Filling Approximation (EFA); see e.g.
- F. de la Iglesia, V. Martin, S. Perez Martin and L. M. Robledo, AIP Conf. Proc. 1175, 199 (2009) : ${ }^{239} \mathrm{Pu}$
- S. Perez Martin and L. M. Robledo, Int. J. Mod. Phys. E 18 788-797 (2009): ${ }^{235} \mathbf{U}$
- Koh Meng Hock, L. Bonneau and P. Quentin, EPJ Web of Conferences 62, 04004 (2013)
- blocking of a single-particle state with specific K^{π} quantum numbers, and taking the lowest-energy solution

3/14

Microscopic approach to odd nuclei

DEFINING A PAIR STATE IN BCS SCHEME

- Definition of a "Kramers quasi-pair" (|iो, |ī̀):

$$
\begin{array}{ll}
\hat{h}_{\mathrm{HF}}|i\rangle=e_{i}|i\rangle & \hat{J}_{z}|i\rangle=\Omega_{i}|i\rangle \quad \text { with } \Omega_{i}>0 \\
\hat{h}_{\mathrm{HF}}|\tilde{i}\rangle=e_{i}|\tilde{i}\rangle & \hat{J}_{z}|\tilde{i}\rangle=\Omega_{i}|\tilde{i}\rangle \\
|\langle\tilde{i} \mid \tilde{i}\rangle| \text { waximum } \Omega_{\tilde{i}}=-\Omega_{i}<0 \\
\text { (close to } 1 \text { in practice) }
\end{array}
$$

- Energy splitting in a Kramers quasi-pair: $\delta e_{i}=e_{i}-e_{\tilde{i}}$

4/14

Microscopic Approach To Odd NUCLEI

NUMERICAL PARAMETERS

- effective nucleon-nucleon interaction: Skyrme SkM* force
- the single-particle states are expanded on a cylindrical harmonic-oscillator basis with a basis size, $N_{0}=14$
- seniority force with pairing strength in the BCS scheme where the pairing strengths were fitted to the odd-even binding energy differences of some actinide nuclei, with retained values of G_{0} (neutron) $=\mathrm{G}_{0}$ (proton) $=-16.0 \mathrm{MeV}$
- pairing window up to $\epsilon_{F}+6.0 \mathrm{MeV}$ with a diffuseness parameter of 0.2 MeV

Microscopic approach to odd nuclei

UNIFIED MODEL PICTURE

- HFBCS solution $\left|\Psi_{K}\right\rangle$ as intrinsic state
- rotational correction to intrinsic energy
- Coriolis coupling for $K=\frac{1}{2}$ states
- energy of the J^{π} member of the K^{π} rotational band:

$$
E_{J}=E_{K=J}+\frac{\hbar^{2}}{2 \mathcal{I}}[J(J+1)-K(K+1)]
$$

with
$E_{J=K}=\underbrace{\left\langle\Psi_{K}\right| \hat{H}\left|\Psi_{K}\right\rangle}_{\text {intrinsic energy }}-\underbrace{\frac{\hbar^{2}}{2 \mathcal{I}}\left(\left\langle\Psi_{K}\right| \hat{\mathbf{J}}^{2}\left|\Psi_{K}\right\rangle-K(K+1)\right)}_{\text {rotational correction }}-\underbrace{\frac{\hbar^{2}}{2 \mathcal{I}} \delta_{K \frac{1}{2}}(-)^{J+\frac{1}{2}}\left(J+\frac{1}{2}\right) a}_{\text {Coriolis coupling }}$
\mathcal{I} is the moment of inertia calculated for the even-even core (preliminary)

6/14

RESULTS

ONE-QUASIPARTICLE BANDHEADS IN ${ }^{235} \mathrm{U}$ (GS WELL)

7/14

RESULTS

One-quasiparticle bandheads in ${ }^{239} \mathrm{PU}$ GS well

8/14

RESULTS

ONE-QUASIPARTICLE BANDHEADS IN ${ }^{239} \mathrm{Pu}$ SD WELL

Fission-isomeric (SD) well of ${ }^{239} \mathrm{Pu}$

9/14

RESULTS

Rotational bands at ${ }^{239}$ Pu First SADDLE

10/14

RESULTS

FISSION BARRIERS FOR FIXED K^{π}

Relative energies of first saddle point and second (SD) minimum with respect to GS minimum for various K^{π} :

${ }^{235} \mathrm{U}$			${ }^{239} \mathrm{Pu}$	
K^{π}	E_{A}	E_{SD}	E_{A}	E_{SD}
$1 / 2^{+}$	6.6	2.6	7.4	1.7
$7 / 2^{-}$	6.8	2.5	7.9	2.5
$5 / 2^{+}$	5.8	1.4	7.0	0.9
$7 / 2^{+}$	-	-	5.9	1.6

RESULTS

EFFECT OF TIME-REVERSAL SYMMETRY BREAKING

Difference between first-fission-barrier heights without (EFA) and with (SCB) time-reversal symmetry breaking in the selfconsistent blocked HFBCS solution for various K^{π} :

K^{π}	$\mathrm{E}_{\mathrm{A}}(\mathrm{SCB})-\mathrm{E}_{\mathrm{A}}(\mathrm{EFA})(\mathrm{keV})$
$1 / 2^{+}$	20
$7 / 2^{-}$	20
$5 / 2^{+}$	0

$12 / 14$

CONCLUSIONS

- The calculated spectra compare favorably with experimental data in GS and SD wells \Rightarrow reasonable class-I, class-II and transition states of rotational character

CONCLUSIONS

- The calculated spectra compare favorably with experimental data in GS and SD wells \Rightarrow reasonable class-I, class-II and transition states of rotational character
(0) The inner barrier height can vary significantly with K^{π}

CONCLUSIONS

- The calculated spectra compare favorably with experimental data in GS and SD wells \Rightarrow reasonable class-I, class-II and transition states of rotational character
(0) The inner barrier height can vary significantly with K^{π}
- EFA seems justified for calculations of fission-barrier heights (not for spectroscopic properties like magnetic moments)

13/14

PERSPECTIVES

- Extend study to second saddle point (outer fission barrier)
- Improve moment of inertia for the core:
- core polarization
- pairing quenching because of unpaired nucleon (blocking)
- Restore particle-number symmetry broken by BCS \Rightarrow Highly Truncated Diagonalization Approach (HTDA) \approx highly truncated shell model based on a mean-field solution
- Account for vibrational degrees of freedom, for example in the HTDA approach
- Extension to odd-odd compound nuclei

Fission-isomeric (SD) well of ${ }^{235} \mathrm{U}$

15/14

