Prompt Fission Neutron Studies at LANSCE

Hye Young Lee for ChiNu collaboration Los Alamos National Laboratory

LANL FIESTA Fission School & Workshop, Sep. 8-12, 2014

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Outline

- PFNS of ²³⁹Pu(n,f) : previous measurements tell us how to improve systematic uncertainties
- Experimental Efforts at ChiNu including MCNP calculations
- How to deduce PFNS using the ChiNu data
- Summary

PFNS of ²³⁹Pu: High energy measurements Current uncertainty : 20~50%

Measurement details on Staples vs. Knitter

 Neutron source : ⁷Li(p,n) with variableenergy and pulsed protons
 Fissile samples
 Neutron detector : liquid scintillators (BC501 vs. NE224)
 Shadow bar to block direct neutrons

- TOF measurements
- No fission events detected
- Significant multiple scattering at thick targets and shielding materials
- Corrections & efficiency estimation using Monte Carlo calculations

ACCELERATOR

Detector Efficiency

(Uncertainty : 5-7 % and 2-5 %)

	Det. volume	Measurements	Calculation
Staples	117 cm ³	²³⁵ U fission counter (E<3.5 MeV)	SCINFUL for the rest energy
Knitter	75 cm ³	Multiple reactions (E<20 MeV)	Maggie for angular corrections

Knitter et al. Atomkernenergie (1973)

Systematic uncertainty in Knitter data

- correction for neutron inelastic scatterings
- constant background subtraction at ~15 MeV
- γ-peak correction influences the deduced shape of neutron spectrum at 5-15 MeV 5000 ¬

PFNS of ²³⁹Pu: Low energy measurements

Bojkov-Nefedov (re-analysis) - **Starostov, Laitai,** Werle (proton-recoil proportional counter), Belov (insufficient doc)

Starostov : notes on ²³⁹Pu measurement

• Time of flight measurements

- Detector : 5 different neutron detectors + 2 different fission counters - $0.1 < E_n < 2$: Anthracene scintillator (ϕ =18mm, 4mm thick) at 51 cm -The absolute normalization for the efficiency is calculated using Monte Carlo calculation
 - 0.01<E_n < 5 : Gas scintillation ionization det. & IC at 10~40 cm -The efficiency was measured with a ²⁵²Cf source
 - For the rest of detectors, used the complied ²⁵²Cf shape (weighted average over Starostov, Blinov, Lajtai) to calculate the detector efficiencies
- After background subtraction, time spectra were corrected further due to multiple scatterings in the target room

NEUTRON DETECTOR

NE 912 OR NE 913 GLASS SCINTILLATORS

Lajtai : notes on ²³⁹Pu measurement

Lajtai et al. NIM A (1990)

FISSION DETECTOR FAST IONIZATION CHAMBER WITH 252 C1 LAYER

Limitations : 1. Overestimation of shadow bar measurements for correcting neutroninduced background 2. Simplified detector response simulation especially near the resonance

- o ⁶Li-glass detector was used
- o ⁷Li-glass detector to measure the delayed g-ray background
- Cu shadow cone to estimate neutron background
- Yield = Yield (⁶Li detector w/o cone) Yield (⁶Li detector /w cone)
 -Yield (⁷Li detector w/o cone) + Yield(⁷Li detector /w cone)

Chi-Nu project : Reduce unceratinty

- Dedicated Flight Path at 4FP-15L The 18' X 18' X 7' basement was built for reducing room-returned background at low energy
- Fission Counter
 Parallel Plate Avalanche Counter : 10 foils with ~ 400 μg/cm² thickness
 Timing resolution is ~ 1ns and light mass for low background
- High Energy Measurement (E_n > 0.7 MeV) : n-γ separation
 54 Liquid scintillators at 100 cm : EJ309, 17.8 cm dia., 5.08 cm thick
- Low Energy Measurement (E_n < 1 MeV) : well-understood detector response function 22 ⁶Li-glass detectors at 40 cm: Scionix10 cm diameter x 18 mm thick

R.C. Haight et al. (J. of Instr., 2012)

Chi-Nu project : Identify background

- Time independent background

 a. accidental coincidences with thermal neutrons ²³⁵U(n,f)
 measurements
 b. accidental coincidences with alpha decays ²³⁹Pu(n,f) measurements
- Time dependent background

a. gamma flash from the neutron beam production – beam energy gate
b. incident fast neutron scattering on PPAC – Li detector angle
dependence and beam energy gate
c. gamma background from various reactions – ⁷Li detector
measurements

d. neutron multiple scattering – *corrections obtained by MCNP calculation*

MCNP calculates detector response for monoenergetic neutrons

⁶Li glass detector at different energies

PFN yields of ²⁵²Cf using a ⁶Li-glass detector

PPAC-ver.1 in the FIGARO room

Fission chamber in the Calibration room

H.Y. Lee, *T.N. Taddeucci*, *et al.* (*NIM A*, 2013)

Low-energy tail is contributed by

- Any hydrogenated material near source and detector
- **o** Multiple scattering on surrounding materials
- **Distance between source and detector**

MCNP shows that much of the difference between PFNS forms is preserved despite significant neutron scattering

²⁵²Cf PPAC-ver.1 at the ChiNu target room (PPAC+ 22 Li-glass detectors + array frame + target room components)

Unfolding vs. Integral approach to deduce PFNS from ChiNu data

- Unfolding : Using MCNP detector responses, the PFN yield can be deconvoluted to the PFNS
- Integral double ratio : Using the spectrum shape-correction factor, the PFN yield can be corrected in bin-by-bin for deducing the PFNS

Double ratio = MCNP(PFNS)/MCNP(Maxw)/[PFNS/Maxw] [PFNS/Maxw] = 1/double-ratio X [Measured ChiNu/ MCNP(Maxw)]

Summary

- For low energy measurements, any hydrogenated materials near the sample should be avoided
- Full MCNP Detector response needs to be studied at each setup
- Time-dependent background should be well understood and corrected
- Even with large multiple-scattering effects, ChiNu measurements still retain sensitivity to the PFNS
- Double-ratio method gives an answer with limited uncertainty, while the full unfolding will provide the PFNS with a target precision

Collaborators and Funding Agencies

LANL: R. C. Haight, H. Y. Lee, T. N. Taddeucci, J. M. O'Donnell, T. Bredeweg, M. Devlin, N. Fotiades, S. Mosby, R. O. Nelson, T. Seagren, S. A. Wender, J. L. Ullmann, D. Neudecker, M. White

LLNL: C.-Y. Wu, E. B. Bucher, R. Henderson

Nuclear Energy University Program (NEUP): Michigan U.

(S. Pozzi, A. Enqvist, M. Flaska, students) Kentucky U.

(M. Kovash, postdoc, student) Brigham Young U.

(L. Rees, J. B. Czirr, students)

Texas A&M U.

(P. Tsvetkov, postdoc)

<u>Commissariat à l'énergie atomique et aux</u> <u>énergies alternatives (CEA):</u> T. Ethvignot, T. Granier, A. Chatillon, J. Taieb, B. Laurent DOE – NNSA Nuclear Energy Nuclear Physics NEUP from DOE-NE

