LA-UR-14-27061



# Use of Fission Data in MCNP6

#### Michael James FIESTA 2014 Workshop Sep 10, 2014



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



April 2014

UNCLASSIFIED

### Outline

- Introduction
- Detection Fission multiplicity
- Detection Delayed particles
- Burnup Fission yields, Q value
- Summary

lamos

April 2014

UNCLASSIFIED | 3

#### **Neutron Signatures**



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

## **Passive Neutron Counter**





<sup>3</sup>He neutron detectors

Fissioning source surrounded by neutron detectors

Prompt multiple neutron emission from fission detected as coincidence neutron events

Pulse processing electronics count the S and D count rates, which are used to calculate the mass of fissioning isotopes

Pulse-processing Electronics UNCLASSIFIED



# HLNCC



April 2014 | UNCLASSIFIED | 5



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



April 2014

UNCLASSIF

## **Multiplicity Treatments in MCNP**

- Several options for simulating fission multiplicity have been added to MCNP in the last few years.
  - Spontaneous multiplicities from Enslinn (LA-13422)
  - Induced multiplicities from Lestone (LA-UR-05-0288)
  - LLNL Fission Library (UCRL-AR-228518)
- Invoked with FMULT card
  - "All or nothing" approach the chosen multiplicity model is applied to all fissions (SF and Induced).



## Fission Multiplicity Treatments in MCNP

- Start a thermal neutron in U-235
- 83.7% Fissions
- All results use the Tally Probability Density Function to compare history scores (modified to score in integer values).
- Run neutron source in sphere with 1<sup>st</sup> interaction (lca 7j -2).
- Tally crossings (F1) and energy of crossings (\*F11) on sphere surface.
- Neutron multiplicities should agree overall for most physics.
- Total Neutron Energy per Fission should show higher "tail" for uncorrelated treatments. Large multiplicity values sample from same energy functions resulting in higher energy totals.
- Compare Integer sampling, default multiplicity treatment (Lestone), LLNL library and FREYA.



April 2014 | UNCLASSIFIED

S

RΥ

Alamos

ONAL LAB

April 2014 | UNCLASSIFIED | 8

#### **Neutron Multiplicity**





43

# **Total Neutron Energy per fission**



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

April 2014 | UNCLASSIFIED | 9



#### **Angular Correlation**

- Place source in cube, run 1<sup>st</sup> interaction (lca 7j -2).
- Tally on opposite faces and adjacent faces.
  - 3 tallies on opposite facets (1.1+1.2, 1.3+ 1.4, 1.5+1.6)
  - 3 tallies on adjacent facets (1.1+1.5, 1.2+1.4, 1.3+1.6)
- If neutron emissions correlate along vector line, then opposite faces should see higher neutron counts/multiplicities.





# **LLNL Fission Library**



LLNL is isotropic and uncorrelated, all tallies are identical.



Opposite 1.1 1.2



# FREYA

l os Alamos NATIONAL LAB FST 1943 FREYA results show three opposite-surface tallies are larger than three adjacent-surface

(curves are displayed with small x-axis offsets for clarity).



Opposite 1.1 1.2

DELATED OVE OS ATALIDS

#### **Fission Neutron Multiplicity**



- Standards MCNP6 Treatment is integer sampling.
- Several fission models can be used for multiplicity.
- All emit uncorrelated neutrons in energy and angle.
- Mode detailed physics(CGMF and/or FREYA) would provide better detailed distributions with correlations.



#### **Fission Gamma Multiplicity**



- Standard Treatment in MCNP6 is integer sampling.
- LLNL Fission library provides Gaussian distribution.
- Need better model for correlations to preserve spectra/energy and multiplicity?





15

## **Fission Gamma Multiplicity**

Base fission gamma multiplicity in MCNP6 (blue) compared to LLNL fission model (black).



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA April 2014 UNCLASSIFIED

# **Fission Gamma Multiplicity**



Fission gamma spectrum in MCNP6 (blue) compared to LLNL fission model (black).



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

#### **Fission Gamma Multiplicity**

• LOS Alamos

17

Overall Fission gamma energy in MCNP6 (blue) compared to LLNL fission model (black).

Gamma energy/fission: Default: 6.44 LLNL: 5.83



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA April 2014 UNCLASSIFIED

#### **Delayed Particle Physics**

- The need arose to compute signals from active interrogation scenarios.
- Leverage the existing CINDER code in MCNP to produce time-dependent isotopics.
- Fission sampling uses existing fission product distributions in CINDER (cinder.dat).
- FP Distributions are from
  - Thermal reactor
  - Fast Reactor
  - 14-MeV source
- MCNP can integrate over FP distribution to gather either coarse binwise spectrum of 25 groups or detailed line spectrum.

### **CINDER90 in MCNP6**



#### What is there?

- FP yields for many isotopes at 3 energies
- Decay information for 3360 isotopes (half-life, branching ratios, decay products)
- 25 group decay gamma spectra
- 63 group cross sections for many reactions.
- Mostly from ENDF/B-VI
- Photonuclear FP yields from GEF\* Code added by NEN-5.

\*Schmidt, K. H., Jurado, B., "General Model Description of Fission Observables," CENBG CNRS/IN2P3 Report, France, October (2010). Available at http://www.cenbg.in2p3.fr/GEF







- What is there?
  - Markov chain solver for evolution of isotopes.
  - Post-processing code reports decay gamma spectra at each time step.







21

### **Qualitative benchmark of DG**

- Compared results to Beddingfield experiments.
- Much of the structure was captured although some differences were also clear.



#### **Delayed Neutrons**



- MCNP has historically done delayed particles using six-group formulation from ENDF and sampling a specified energy spectrum.
- The delayed particle feature allows us to build a custom delayed-neutron precursor from the FP set and sample for time and energy.
- Data files delay\_library\_v3.dat contains decay neutron information for 279 isotopes.
- This process is much slower!

#### **DN from U-235 Results**

ENDF:



6

1

10000000

1

1

1

1

1

1

1

23

**DN** Fraction: 0.00656 Time bins of Delayed Neutrons MCNP/CINDER 0.00773 menp 1e-9 probid: 09/05/14 09:46:20 tally 1e-10 n nps Т a 1 1 bin normed 1e-11 mctal = 2351.mУ Surface f h d Flag/Dir а k 1e-12 User 11 Segment  $\mathbf{S}$ Mult m 1e-13 Angle C с 1 Energy e Time t 1e-14 \_ 2351.m \_\_\_\_ 235m.m 1e-15 1e-16 1e+3 1e+5 1e+7 1e+9 1e+11 Time (shakes)



## **DN from Pu-239 Results**



24

DN Fraction: ENDF: 0.00226 MCNP/CINDER 0.00257





25

#### **DN** Spectra



Energy of Delayed Neutrons



## **Burnup/Depletion Capability in MCNP6**

- Show flowchart
- Ability to track isotopic evolution in critical systems.
- Relies on CINDER for data/algorithms.





Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

27

## **Monte Carlo Linked Depletion Process**



• Steady state Monte Carlo using MCNPX, depletion utilizing CINDER90







#### **Predictor Corrector**



$$N(r,t) = N(r,0)e^{-\sum_{i=0}^{E}\sigma(r,E)\int_{t_{1}}^{t_{2}}\phi(r,t')dt'}$$





## **FP Yield Energy Dependence**





UNCLASSIFIED



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

### **FP Yield Data Available**



30

| Element | Ζ  | А   | Thermal | Fast | HE | SF |
|---------|----|-----|---------|------|----|----|
| Th      | 90 | 227 | х       |      |    |    |
| Th      | 90 | 229 | х       |      |    |    |
| Th      | 90 | 232 |         | Х    | Х  |    |
| Pa      | 91 | 231 |         | Х    |    |    |
| U       | 92 | 232 | Х       |      |    |    |
| U       | 92 | 233 | х       | Х    | Х  |    |
| U       | 92 | 234 |         | Х    | Х  |    |
| U       | 92 | 235 | х       | Х    | Х  |    |
| U       | 92 | 236 |         | Х    | Х  |    |
| U       | 92 | 237 |         | Х    |    |    |
| U       | 92 | 238 |         | Х    | Х  | Х  |
| Np      | 93 | 237 | Х       | Х    | Х  |    |
| Np      | 93 | 238 |         | Х    |    |    |
| Pu      | 94 | 238 |         | Х    |    |    |
| Pu      | 94 | 239 | Х       | Х    | Х  |    |
| Pu      | 94 | 240 | Х       | Х    | х  |    |
| Pu      | 94 | 241 | Х       | Х    |    |    |
| Pu      | 94 | 242 | Х       | Х    | х  |    |

| Element | Z   | Α    | Thermal | Fast | HE | SF |
|---------|-----|------|---------|------|----|----|
| Am      | 95  | 241  | Х       | Х    | х  |    |
| Am      | 95  | 242m | Х       |      |    |    |
| Am      | 95  | 243  |         | Х    |    |    |
| Cm      | 96  | 242  |         | Х    |    |    |
| Cm      | 96  | 243  | Х       | Х    |    |    |
| Cm      | 96  | 244  |         | Х    |    | Х  |
| Cm      | 96  | 245  | Х       |      |    |    |
| Cm      | 96  | 246  |         | Х    |    | Х  |
| Cm      | 96  | 248  |         | Х    |    | Х  |
| Cf      | 98  | 249  | Х       |      |    |    |
| Cf      | 98  | 250  |         |      |    | Х  |
| Cf      | 98  | 251  | Х       |      |    |    |
| Cf      | 98  | 252  |         |      |    | Х  |
| Es      | 99  | 253  |         |      |    | Х  |
| Es      | 99  | 254  | Х       |      |    |    |
| Fm      | 100 | 254  |         |      |    | Х  |
| Fm      | 100 | 255  | Х       |      |    |    |
| Fm      | 100 | 256  |         |      |    | Х  |

- Transmutation chain data for 3400 isotopes
- Fission Yield Data for 1325 isotopes Thermal: 18 isotopes, Fast: 22 isotopes, HE: 11 isotopes, S.F.: 9 isotopes

# **FP Yield Nuclide Dependence**

#### **Open Cinder.dat**

- Go to second "#3215"
- 12,13,14 =(n,f) yield sets
- Go to "Fission Yield"





lamos

FST 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

#### **Recoverable Energy per Fission**



 $Q_{recoverable} = Q_{prompt} + Q_{delayed} + (\overline{\nu}(E) - k_{eff}) * Q_{capture \gamma} - Q_{neutrino}$ 

- Prompt Q value is usually determined from ENDF tape
  - File 1 MT 458
- Delayed Q value may be estimated assuming local energy deposition
  - Deposited gamma energy may need adjustment
    - 207 of 390 isotopes contain capture gamma data in ENDF VII.0
- Prompt Q not available for all actinides.
  - Qfis array on MCNP is incomplete and ad-hoc (ENDF-VI, JEFF-3.1, ??)
  - Data present for 22 isotopes (64 actinides in ENDF-VII)
- Capture gamma data incomplete. UNCLASSIFIED

Emitted and recoverable energy for fission of U-235

| Form                      | Emitted Energy<br>(MeV) | Recoverable<br>Energy (Mev) |
|---------------------------|-------------------------|-----------------------------|
| Fission Fragments         | 168                     | 168                         |
| Fission Product Decay     |                         |                             |
| γ -rays                   | 8                       | 8                           |
| β-rays                    | 7                       | 7                           |
| neutrinos                 | 12                      |                             |
| Prompt gamma rays         | 7                       | 7                           |
| Fission neutrons (kinetic |                         |                             |
| energy)                   | 5                       | 5                           |
| Capture γ-rays            |                         | 3-12                        |
| Total                     | 207                     | 198-207                     |



## H. B. Robinson



- 15 X 15 Westinghouse fuel assembly from H. B. **Robinson Unit 2** 
  - **ORNL/TM-12667**
  - ENDF/B VII.0 temperature dependent library
  - 16.02, 23.8, 28.47, and 31.66 GWD/MTU

| Cycle                                           | 1     | 2     | 3     | 4     |
|-------------------------------------------------|-------|-------|-------|-------|
| Operating Interval<br>(days)                    | 243.5 | 243.5 | 156   | 156   |
| Downtime<br>(days)                              | 40    | 64    | 39    | **    |
| Average Soluble<br>Boron Concentration<br>(ppm) | 625.5 | 247.5 | 652.5 | 247.5 |

\*\* 3936 for Cases A-B or 3637 for Cases C-D

UNCLASSIFIED



33



#### Results

|         | Case A        |       |       |            |  |  |
|---------|---------------|-------|-------|------------|--|--|
|         | 16.02 GWD/MTU |       |       |            |  |  |
| Isotope | MCNP6         | MCNPX | SCALE | MONTEBURNS |  |  |
| 235U    | 3.73          | 0.42  | 0.60  | 2.62       |  |  |
| 236U    | -3.43         | -1.76 | -1.50 | -3.37      |  |  |
| 238U    | 0.06          | 0.12  | 0.10  | 0.17       |  |  |
| 238Pu   | -2.69         | -3.41 | 1.50  | 2.29       |  |  |
| 239Pu   | 5.59          | 0.27  | 7.00  | 2.01       |  |  |
| 240Pu   | 2.66          | 3.32  | -1.50 | 4.22       |  |  |
| 241Pu   | 7.68          | 3.57  | 5.90  | 7.04       |  |  |
| 237Np   | -3.23         | -6.13 | 6.00  | -2.76      |  |  |
| 99Tc    | 8.49          | 10.91 | 12.40 | 11.35      |  |  |
| 137Cs   | -3.06         | -1.12 | 0.20  | -1.64      |  |  |

|         | Case B       |       |       |            |  |
|---------|--------------|-------|-------|------------|--|
|         | 23.8 GWD/MTU |       |       |            |  |
| Isotope | MCNP6        | MCNPX | SCALE | MONTEBURNS |  |
| 235U    | 3.71         | -0.58 | 1.40  | 4.11       |  |
| 236U    | -2.70        | -1.90 | -2.20 | -3.09      |  |
| 238U    | -0.60        | -0.54 | -0.60 | -0.53      |  |
| 238Pu   | -4.22        | -3.86 | 0.90  | 0.83       |  |
| 239Pu   | 2.50         | -0.37 | 7.70  | 1.31       |  |
| 240Pu   | 1.62         | 0.59  | -4.20 | 1.61       |  |
| 241Pu   | 5.44         | 2.82  | 6.00  | 4.97       |  |
| 237Np   | -4.88        | -7.31 | 5.50  | -5.55      |  |
| 99Tc    | 5.70         | 6.76  | 8.60  | 8.34       |  |
| 137Cs   | -2.82        | -1.88 | -0.80 | -2.22      |  |

UNCLASSIFIED

Slide 34

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA April 2014 | UNCLASSIFIED | 34



#### Results

|         | Case C        |        |       |            |  |
|---------|---------------|--------|-------|------------|--|
|         | 28.47 GWD/MTU |        |       |            |  |
| Isotope | MCNP6         | MCNPX  | SCALE | MONTEBURNS |  |
| 235U    | -3.27         | -11.80 | -4.90 | -2.44      |  |
| 236U    | 1.84          | 3.72   | 2.20  | 1.24       |  |
| 238U    | 0.47          | 0.47   | 0.50  | 0.54       |  |
| 238Pu   | -11.04        | -14.72 | -6.50 | -7.01      |  |
| 239Pu   | -0.64         | -9.22  | 5.30  | -1.77      |  |
| 240Pu   | 2.09          | -5.42  | -4.90 | 1.14       |  |
| 241Pu   | -5.08         | -11.03 | 0.50  | -4.72      |  |
| 237Np   | 3.03          | 2.43   | 14.30 | 2.45       |  |
| 99Tc    | 11.45         | 9.58   | 14.60 | 14.94      |  |
| 137Cs   | 0.11          | -0.38  | 3.90  | 0.70       |  |

|         | Case D        |        |       |            |  |  |
|---------|---------------|--------|-------|------------|--|--|
|         | 31.66 GWD/MTU |        |       |            |  |  |
| Isotope | MCNP6         | MCNPX  | SCALE | MONTEBURNS |  |  |
| 235U    | -0.08         | -9.66  | 3.30  | 5.98       |  |  |
| 236U    | 0.17          | 1.18   | -0.40 | -1.51      |  |  |
| 238U    | -0.73         | -0.73  | -0.80 | -0.89      |  |  |
| 238Pu   | -8.58         | -10.69 | 2.60  | 1.97       |  |  |
| 239Pu   | -0.20         | -8.66  | 12.80 | 6.00       |  |  |
| 240Pu   | 1.32          | -6.52  | -4.10 | 2.65       |  |  |
| 241Pu   | -2.56         | -8.79  | 9.10  | 2.71       |  |  |
| 237Np   | 1.58          | 3.08   | 18.40 | 7.91       |  |  |
| 99Tc    | 7.79          | 5.53   | 11.20 | 11.90      |  |  |
| 137Cs   | -2.45         | -3.09  | 1.50  | -1.44      |  |  |

#### UNCLASSIFIED

lide 35



#### • Los Alamos NATIONAL LABORATORY

#### **Notes on Results**

- Results
  - No code best predicts all isotopes at all burnups
  - Creation and destruction is dictated by spectrum and geometry selfshielding; it is difficult to determine the specific reaction where the methods differ
  - The difference in data or calculation setup may be generating the largest difference
- Conclusions on MCNP6 burnup
  - Each actinide and Cs-137 was computed to within a few %
  - Tc-99 was computed to within 12%
- H.B Robinson
  - At 16-28 GWD/MTU → SCALE/SAS2H, MCNPX 2.6.0, MONTEBURNS and MCNP6 produces similar results
  - 31.66 GWD/MTU  $\rightarrow$  MCNP6 produces "superior" results

#### **Issues in Burnup**



- Relies on FP data for specific systems.
  - Difficult to generalize to other systems.
- Estimate of Q value/Captured fission energy is limited by incomplete datasets.





Spontaneous Fission Rate of U-235 LOS A

- "Pet Peeve"
- ENDF, SOURCES4C, CINDER use 1.05e-5 n/s-g (Branching ratio 7.2e-11)
  - Phys Rev C V.23 No. 3 (1981) p.1110
- MCNP6, Ensslin, Wikipedia use 2.99e-4 n/s-g (Branching ratio 2.0e-9)
  - Phys Rev V.86 No. 1 (1952) p.21
- These numbers differ by factor of 30!
- Why?!



#### Summary

- Historically MCNP used fission cross sections and (integer samping).
- Multiple other kinds of fission data have been incorporated (multiplicity, FP distributions).
- There is a need and interest in adding more fidelity to these datasets/models.



EST 19/3