The University of New Mexico Fission Fragment Spectrometer

<u>Adam Hecht</u>, Richard Blakeley, Lena Heffern, James Cole, Corey Vowell, Paul Gilbreath **Department of Nuclear Engineering** University of New Mexico

Part of the LANL SPIDER collaboration

FIESTA Workshop Santa Fe, NM Sept. 11, 2014

UNM Fission Fragment Spectrometer

- Motivation for fission fragment data
- Method
- Hardware
- Characterization and preliminary results
- Next steps
- Summary

The desired data to understand fission, delayed radiation

The desired data to understand fission, delayed radiation

Motivation – fission theory

Yield varies with fission target, energy. Need data to work back to fission preformation states.

P. Möller et al., Nature 409, 785-790(15 February 2001)

Motivation – active interrogation Delayed signal from β , β (n) decay

Delayed radiation:

Beta decay, gamma emission, some neutron emission

									4
43	Tc 94 4.883h	Tc 95 61d	Tc 96 4.28d	Tc 97 2.6e+06y	Tc 98 4.2e+06y	Tc 99 2.11e+05y	Tc100 15.46s	Tc101 14.2m	
42	Mo 93 4000y	Mo 94 9.25	Mo 95 15.92	Mo 96 16.68	Mo 97 9.55	Mo 98 24.13	Mo 99 2.747d	Mo100 9.63	
41	Nb 92 3.47e+07y	Nb 93 100	Nb 94 2.03e+04y	Nb 95 34.99d	Nb 96 23.35h	Nb 97 1.202h	Nb 98 51.3m	Nb 99 2.6m	
40	Zr 91 11.22	Zr 92 17.15	Zr 93 1.53 e+06y	Zr 94 17.38	Zr 95 64.03 d	Zr 96 2.8	Zr 97 16.74h	Zr 98 30.7s	ton
39	Y 90 2.667d	58.51d	Y 92 3.54h	Y 93 10.18h	Y 94 18.7m	Y 95 10.3m	Y 96 9.6s	Y 97 3.75s	Pro
38	Sr 89 50.53 d	Sr 90 28.79y	9.65m	Sr 92 2.71h	Sr 93 7.423m	Sr 94 1.255m	Sr 95 23.9s	Sr 96 1.07s	
37	Rb 88 17.77m	Rb 89 15.15m	Rb 90 (4.3m	2h 91 58.4	Rb 92 4.492s	Rb 93 5.84s	Rb 94 2.702s	Rb 95 0.3775s	KIN
36	Kr 87 1.272h	Kr 88 2.84h	Kr 89 3.15m	Kr 90 32.32s	Xr 91 8.51	Kr 92 1.84s	Kr 93 1.286s	Kr 94 0.2s	
35	Br 86 55s	Br 87 55.6s	Br 88 16.5s	Br 89 4.4s	Br 90 1.92s	Br 91 0.541s	Br 92 0.343s	Br 93 0.102s	

Br91 (0.5s) -> Kr91 (8.6s) -> Rb91 (58s) -> Sr91 (9hr) -> Y91...

http://wwwndc.jaea.go.jp/CN10/CN010.html

The plan: Measure fission fragments vs. N energy, event by eventPulsed P beam on N convertorN on fission target

Neutron Time Of Flight to fission target gives En

Method, E-v spectrometer

- TOF followed by Ionization Chamber: TOF-IC
- A, Z, E measurements
 - v: TOF

A:
$$m = \frac{2E}{v^2} = \frac{2Et^2}{l^2}$$
 $\frac{\delta m}{m} = \sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(2\frac{\delta t}{t}\right)^2 + \left(2\frac{\delta l}{l}\right)^2}$

Z: Ionization chamber rewiring and analysis, will describe

N: A and Z \rightarrow N

Moving towards dual arm for UNM Fission Fragment Spectrometer: get TKE, ν

Mass Resolution Requirements

$$m = \frac{2E}{v^2} = \frac{2Et^2}{l^2}$$

$$\frac{\delta m}{m} = \sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(2\frac{\delta t}{t}\right)^2 + \left(2\frac{\delta l}{l}\right)^2}$$

light fragments fwhm/centroid = 1/90 = 1.1%

PUSHING TO heavy fragments

fwhm/centroid = 1/140 = 0.7%

Interplay of variables L good, for 1 m need < 7mm really depends on E and t absolute max need δE/E < 0.7% need δt/t < 0.35%

Overview of Instrumentation Time-of-Flight

Overview of Instrumentation Ionization Chamber

Recent Characterization Results Ionization Chamber

Recent Characterization Results Time Of Flight

Recent Characterization Results Time Of Flight

Next Steps

- Correlated TOF/KE data \rightarrow extract mass distribution
- Improve Resolution:
 - Thinner TOF foils \rightarrow less t straggling
 - from 100 to 20 ug C foils
 - Thinner IC window \rightarrow less E straggling
 - switched to 1.5 um mylar (from 2.5)
 - will change to 0.2 μm SiN
- Z information from Ionization Chamber will have A,Z,N, KE
- Dual arm: direct measurement of TKE, $\boldsymbol{\nu}$

Z determination - Bragg curve analysis (> 1MeV/amu, light fragments)

Range follows Bethe formula Z, v (thus E, m) dependent SRIM calc. fission fragments (300 torr P-10)

¹⁴⁰Xe, 70 MeV

⁹⁰Sr, 115 MeV

⁸⁰Ge, 121 MeV

Z determination - Active Cathode (> 0.5 MeV/amu, light and heavy)

T. Sanami et al. NIM A 589 (2008) 193-201

Summary

- Prototyped Fission Fragment Spectrometer
 - TOF
 - Ionization Chamber
 - Tested with Cf at UNM, n+²³⁵U at LANSCE
- Correlating TOF and KE for mass spectra
- Improving resolution
- Ionization Chamber tests for Z determination
 - Bragg spectroscopy
 - Active Cathode
- Implementing Z determination in full TOF/IC spectrometer

Thank you

Graduate students

- Rick Blakeley TOF
- Lena Heffern IC
- James Cole IC
- Graduated MS student Drew Mader IC

Undergraduate students

- Paul Gilbreath
- Corey Vowell

SPIDER collaboration

NEUP grant DE-NE0000732

