LA-UR-14-27025

Fission Activities at the Los Alamos Neutron Science Center (LANSCE)

Robert C. Haight

Fiesta Workshop

Santa Fe, October 10-12, 2014

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Colleagues in present fission experiments at LANSCE

- LANL- LANSCE-NS, C-NR, T-2
- LLNL Physical and Life Sciences
- <u>Other Laboratories</u> Idaho National Laboratory, CEA Bruyères-le-Châtel (France), IRMM (Belgium)
- <u>Universities</u> Abilene Christian, Brigham Young, Cal Poly, Colorado School of Mines, Idaho State, Kentucky, New Mexico, Ohio, Oregon State, Rensselaer Polytechnic Inst.

LANSCE experiments to be discussed at FIESTA (1)

By LANL:

- Mark Chadwick
 - Nuclear fission research at Los Alamos
- Fredrik Tovesson
 - Neutron-induced fission cross sections for U-233,234,236,238 up to 200 MeV
- John Ullmann
 - •Prompt gamma-ray production in neutron-induced fission of ²³⁹Pu
- Marian Jandel
 - Current and future fission research at DANCE
- Hye Young Lee
 - •Prompt Fission Neutron Studies at LANSCE
- Ronald Nelson
 - Prompt X-Rays from Fast-Neutron-Induced Fission of ²³⁸U
- Nicholas Fotiades
 - Prompt γ-ray spectroscopy of fission fragments
- Krista Meierbachtol
 - First Results of Fission Mass Yield Measurements with SPIDER at LANSCE
- Dana Duke
 - Investigation of ²³⁸U Fission Properties at LANSCE

IATIONAL LABORA

UNCLASSIFIED

LANSCE experiments will be discussed at FIESTA (2)

By Colleagues:

- Mike Heffner (Lawrence Livermore Nat. Lab)
 - •The Fission Time Projection Chamber
- Adam Hecht (University of New Mexico) • The University of New Mexico Fission Fragment Spectrometer
- Sara Pozzi (University of Michigan)
 - Correlations in Prompt Neutron and Gamma Ray Emissions from Fission

By Evaluators:

- Denise Neudecker (LANL T-2)
 - Open questions concerning the evaluation of the ²³⁹Pu prompt fission neutron spectra up to 30 MeV incident neutron energy

LANSCE experiments will be discussed at FIESTA (3)

By Poster:

- Verena Kleinrath (LANSCE-NS)
 - Fragment Angular Distributions in Neutron-Induced Fission of ²³⁵U and ²³⁹Pu using a Time Projection Chamber
- Dan Shields (LANSCE-NS)
 - Development of the New SPIDER Detector at LANSCE
- Bayarbadrakh Baramsai (C-NR)
 - High Precision Measurement of 236U(n,g) Cross Section
- Gencho Rusev (C-NR)
 - Development of fission-fragment detectors
- Carrie Walker (C-NR)
 - Measurements of fission fragments in coincidence with prompt fission gamma rays at DANCE
- Rusty Towell (Abilene Christian Univ.)
 - Potential to Advance the Thorium Fuel Cycle with the NIFFTE fissionTPC

Fission at LANSCE builds on LANL history

Enrico Fermi (Eugene Farmer)

Niels Bohr (Nicholas Baker) John Wheeler (John Woolley)

Some later LANL contributions toward understanding fission

- Moore, Keyworth et al. spin assignments with polarized neutron beam, polarized ²³⁵U
- Britt, Wilhelmy, Back, et al. -- surrogate reactions for fission barriers, including (t,pf) and (t,df) reactions
- "Physics 8" single pulse neutron source
- Gavron time scales for fission
- Potential energy surfaces (Moller)
- Prompt Fission Neutron Spectra Terrell; Madland, Nix →Los Alamos Model
- Fission yields Wahl, England and Rider
- Fission cross sections Lisowski, Staples, Morley et al. relative to H(n,p) standard cross section

UNCLASSIFIED

Fission measurements at LANSCE are made with many different instruments

GEANIE (n,fxγ)

Chi-Nu (n,f) PFN (n,fxn)

TPC (n,f)

Operated by Los Alamos National Security, LLC for NNSA

SPIDER (n,f)^AZ Double gridded ion chamber (n f) (n f)^AZ

Surface barrier detectors - TKE

Fission experiments at LANSCE use neutrons at the Lujan Center and Target 4

UNCLASSIFIED

LANSCE neutron sources cover (n,f) for incident neutron energies from subthermal to ~ 200 MeV

EST. 1943

Fission Cross Sections

Parallel-plate Ionization Chamber

Fission cross section measurements at LANSCE

- Fission counting with parallel plate ionization chamber
 - Up to 4 foils per chamber
 - 12 mm cathode grid spacing: fragments do not range out
 - Energy deposition used to qualify fission events
- Relative measurements
 - Using the ²³⁵U(n,f) standard
- Neutron time-of-flight
 - Wide neutron range measured in one experiment
 - Background due to frame-overlap and
 - room return neutrons

Slide 12

²³⁶U(n,f) cross section results: ENDF a little high?

LANSCE: A. Laptev, F. Tovesson and T. S. Hill, AIP Conf. Proc. 1525, 563 (2013).

Slide 13

A New Approach to Measuring Fission Cross Sections

Time Projection Chamber

Time Projection Chamber (TPC) for precision cross section measurements

TPC

Beam profile imaging

- Actinide distribution on target determined by autoradiograph (alphas)
 - Location and angle of fission fragments is determined
 - Information on track ion density \rightarrow ^AZ (to some resolution)
 - Fully instrumented LLNL/LANLTPC was commissioned at LANSCE in August 2013
 Alamos ATIONAL LABORATORY

EST.1943

Total Kinetic Energy

Gridded Ionization Chamber

Total Kinetic Energy (TKE) released in fission

- Madland has pointed out the need for new measurements of TKE in fission extending beyond 10 MeV
- Current measurements at LANSCE employ two detector types, Gridded IC and SSBD, to measure TKE at thermal and 0.2 – 100 MeV neutron energy
- Two detector types allow for better understanding of systematic effects

Los Alamos
NATIONAL LABORATORY

Total kinetic energy measurement

- New measurements follow Lestone curve
- Details not included in Madland parameterization
 - Structure at second-chance fission threshold

Prompt X-rays with good resolution

GEANIE

K-X-ray results from ²³⁸U(n,f) show range of elements produced in fission

 $E_{x-ray} = 10 - 23 \text{ keV}$

 $E_{x-ray} = 20 - 42 \text{ keV}$

Spectrum deconvolution in terms of X-ray lines: Incident neutron energy: 0.7 to 6MeV Fitting with one parameter per element

Ref. T. Granier et al., Eur. Phys. J. A (2013) 49: 114

Gamma-rays to elucidate structure of fission products

GEANIE

GErmanium Array for Neutron-Induced Excitations

Many new transitions in ⁸⁶Kr were observed

• LOS Alamos

Total Prompt Gamma-ray output

DANCE

Detector for Advanced Neutron Capture Experiments

DANCE: Highly segmented 4π gamma-ray calorimeter with PPAC fission tagger

DANCE ball (Open) ⁶LiH sphere in center

160 BaF₂ crystals – each 0.75 liter

- Inner radius = 17 cm, crystal depth = 15 cm
- Parallel-plate avalance counter for fission identification
- LLNL/LANL/MSI

Detector for Advanced Neutron Capture Experiments

24

²³⁹Pu(n,f) Average γ Multiplicity and E_{tot,γ}

 Data analyzed for spectral shape, total energy, energy per detector and multiplicity

	<m></m>		<e<sub>tot,y></e<sub>	
DANCE (10.93 eV)	7.15	0.09	7.46	0.06
Pleasonton (thermal) (Nucl. Phys. A 213, 413 (1973))	6.88	0.35	6.73	0.35
Verbinski (thermal) (Phys. Rev. C 7, 1173 (1973))	7.23		6.81	
MCHF (Stetcu/Talou) (Thermal, 140 keV thresh. α=1.5) LA-UR-14-23128	7.05		6.74	
Madland Summary				6.74
Chyzh, "1D" Unfolding (Phys. Rev. C 87, 034620 (2013))	7.50		7.30	
Chyzh "2D" Unfolding (Phys. Rev. C 90, 014602 (2014))	7.9	93		7.94

• Uncertainty in <Etot> ~ Fitting uncertainty, determined as σ of 14 iterations with lowest χ^2 !

25

Fission total γ-ray energy vs. incident neutron energy for ²³⁹Pu(n,f)

- Fluctuations in prompt fission gamma energy anti-correlated with neutron emission
- More detailed information on ²³⁹Pu(n,γf) process (Lynn, 1965)
- Qualitative behavior reported by Shackleton in 1972

Prompt Fission Neutron Spectra

Chi-Nu Array

Chi-Matrix of Neutron Emission Spectra

UNCLASSIFIED

Chi-Nu array of fast neutron detectors measures prompt neutron spectra emitted in fission

- 22 ⁶Li-glass scintillation detectors - - or
- 54 liquid scintillation neutron detectors

Double time-of-flight experiment

Fission sample and fission counter (LLNL) contain ~ 100 mg of ²³⁹Pu

• Parallel-Plate Avalanche Counter (PPAC)

EST. 1943

UNCLASSIFIED

Previous measurements made with "white" neutron source at LANSCE for ²³⁹Pu(n,f): CEA-LANL (FIGARO)

S. Noda et al., Phys. Rev. C 83, 034604 (2011)

Data > ENDF for Eout > 7 MeV

A. Chatillon et al., Phys. Rev. C 89, 014611 (2014)

30 30

Literature data, discrepancies and target accuracies

Fission Fragment Identification

SPIDER

<u>SP</u>ectrometer for <u>Ion</u> <u>DE</u>termination in fission <u>R</u>esearch

TPC and GIC give information on mass and charge yields and angular distributions of fission products

LLNL/LANL Time Projection Chamber

Double Frisch-grid ion chamber (IRMM)

SPIDER – Fission product mass yields

SPIDER 2-arm prototype installed at Lujan Center

<u>SP</u>ectrometer for <u>Ion DE</u>termination in fission <u>R</u>esearch

• 2E-2v method

$$M = \frac{2Et^2}{l^2}$$

M = mass E = energy t = timeI = path length

- Measure energy, time, and path length of products, each with small uncertainties
- Goal: 1 atomic mass unit resolution

34

Correlation of Prompt Neutron and Gamma-ray Output

Michigan arrays

²³⁵U Neutron-Induced Fission Experiments *Michigan Experiments at LANSCE 2012 and 2013*

- ²³⁵U fission chamber; double TOF experiment
- Measurements of multiplicity and directionality of neutron emission
- 2 weeks beam time at 4FP15L-A (22 meters) → many TB of collected data

EST.1943

UNCLASSIFIED

So how do these experiments help in understanding the physics of fission?

- Fission barriers
- Fission probability when there are competing channels for decay of compound nucleus, e.g. (n,n')
- Fission resonances e.g. $(n,\gamma f)$
- Fission yields
- Temperature of fragments
- Angular momentum of fission fragments
- Correlations

37

Acknowledgments

- This work is performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396.
- Support comes from
 - **US Department of Energy**
 - National Nuclear Security Administration
 - Office of Nuclear Physics
 - Office of Nuclear Energy University Programs

LANL – Laboratory Directed Research and Development

Thank you!!

38

