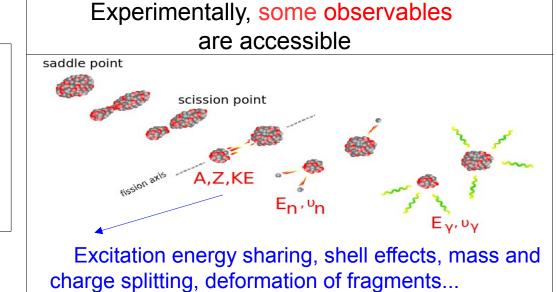


Development of a new tool called FALSTAFF to study the fission process


<u>C. Golabek</u>, D. Doré, F. Farget, F.-R. Lecolley, G. Lehaut, T. Materna, J. Pancin, S. Panebianco, T. Papaevangelou, L. Thulliez

CEA – Irfu/SPhN & Irfu/Sédi, Saclay, France GANIL, Caen, France LPC, Caen, France

> Fission ExperimentS and Theorical Advances

> > Sep. 8-12, 2014 Santa Fe, NM, US

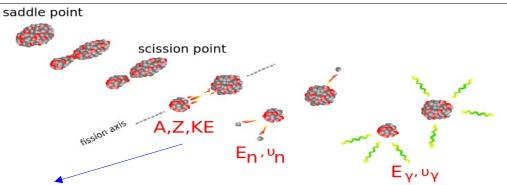
 \rightarrow needs of experimental data to constrain the models

 \rightarrow needs of experimental data to constrain the models

 \rightarrow needs of experimental data to constrain the models

Experimentally, some observables are accessible saddle point scission point

Excitation energy sharing, shell effects, mass and charge splitting, deformation of fragments...


Former experiments

In the 50s and 60s (Thermal energies) Fraser & Milton (U-233) Whetstone et al.(Cf-252) Apalin et al. (U-235, U-233, Pu-239)

In the 80s & 90s (Th, ~0,5, 5,5 MeV) *Müeller, Navqi et al.* (U-235, Np-237) *Nishio et al.* (U-235, U-233, Pu-239) Tsuchiya et al (Pu-239)

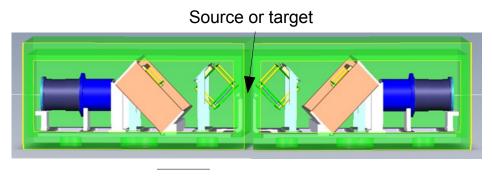
 \rightarrow needs of experimental data to constrain the models

Experimentally, some observables are accessible

Excitation energy sharing, shell effects, mass and charge splitting, deformation of fragments...

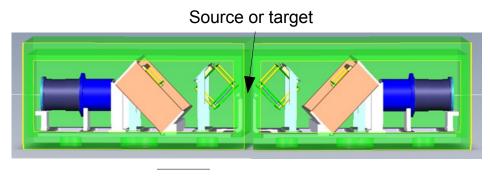
Former experiments

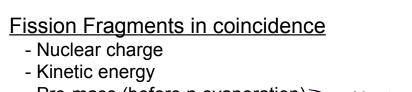
In the 50s and 60s (Thermal energies) Fraser & Milton (U-233) Whetstone et al.(Cf-252) Apalin et al. (U-235, U-233, Pu-239)


In the 80s & 90s (Th, ~0,5, 5,5 MeV) *Müeller, Navqi et al.* (U-235, Np-237) *Nishio et al.* (U-235, U-233, Pu-239) Tsuchiya et al (Pu-239)

Needs of data

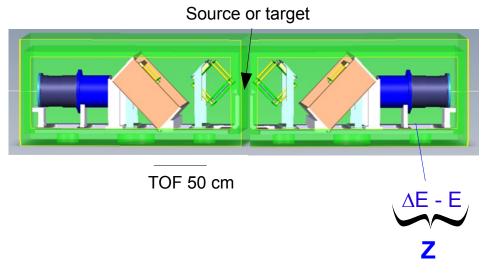
- to obtain a clear view of the evolution with energy
- to enlarge the variety of actinides
- to improves models :
 - understanding of the process
 - production of database for applications


Four Arm cLover for the STudy of Actinide Fission Fragments


TOF 50 cm

Four Arm cLover for the STudy of Actinide Fission Fragments

TOF 50 cm



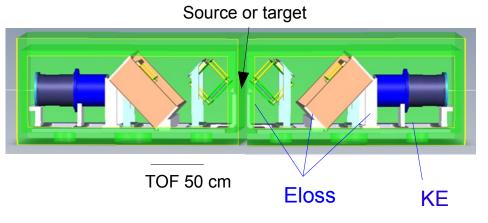
- Pre-mass (before n evaporation)
- Post-mass (after n evaporation) 🗲

Neutron multiplicity

Four Arm cLover for the STudy of Actinide Fission Fragments

Experimental techniques :

- **Nuclear charge** $\rightarrow \Delta E$ - E correlation


Fission Fragments in coincidence

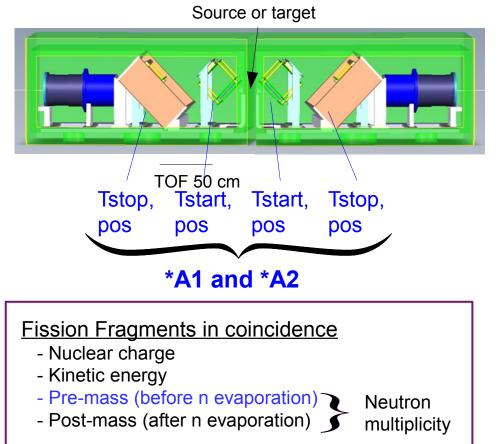
- Nuclear charge
- Kinetic energy
- Pre-mass (before n evaporation)
- Post-mass (after n evaporation) 🗲

Neutron multiplicity

Four Arm cLover for the STudy of Actinide Fission Fragments

Experimental techniques :

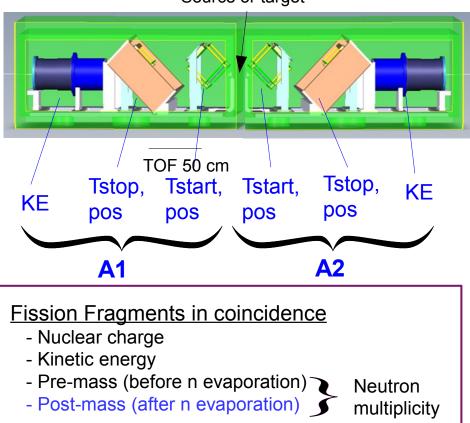
- **Nuclear charge** $\rightarrow \Delta E$ E correlation
- **Kinetic energy** \rightarrow E + Eloss (material)


Fission Fragments in coincidence

- Nuclear charge
- Kinetic energy
- Pre-mass (before n evaporation)
- Post-mass (after n evaporation)

Neutron multiplicity

Four Arm cLover for the STudy of Actinide Fission Fragments

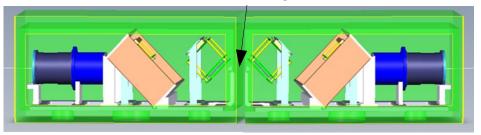


Experimental techniques :

- **Nuclear charge** $\rightarrow \Delta E$ E correlation
- Kinetic energy \rightarrow E + Eloss (material)
- Mass before evaporation \rightarrow 2V method : TOF and positions measurement

Four Arm cLover for the STudy of Actinide Fission Fragments

Source or target


Experimental techniques :

- **Nuclear charge** $\rightarrow \Delta E$ E correlation
- **Kinetic energy** \rightarrow E + Eloss (material)
- Mass before evaporation \rightarrow 2V method : TOF and positions measurement
- Mass after evaporation → 2 EV method : TOF, positions and kinetic energy measurement

Four Arm cLover for the STudy of Actinide Fission Fragments

Source or target

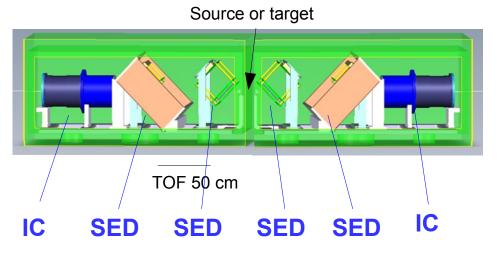
TOF 50 cm

Fission Fragments in coincidence

- Nuclear charge
- Kinetic energy
- Pre-mass (before n evaporation)
- Post-mass (after n evaporation) 🕥

Neutron multiplicity

Experimental techniques :


- **Nuclear charge** $\rightarrow \Delta E$ E correlation
- **Kinetic energy** \rightarrow E + Eloss (material)
- Mass before evaporation \rightarrow 2V method : TOF and positions measurement
- Mass after evaporation \rightarrow 2 EV method : TOF, positions and kinetic energy measurement

Resolutions :

Energy : 1% Time : 150 ps Position : 1,5 mm

Four Arm cLover for the STudy of Actinide Fission Fragments

Fission Fragments in coincidence

- Nuclear charge
- Kinetic energy
- Pre-mass (before n evaporation)
- Post-mass (after n evaporation)

Neutron multiplicity

Experimental techniques :

- **Nuclear charge** $\rightarrow \Delta E$ E correlation
- **Kinetic energy** \rightarrow E + Eloss (material)
- Mass before evaporation \rightarrow 2V method : TOF and positions measurement
- Mass after evaporation \rightarrow 2 EV method : TOF, positions and kinetic energy measurement

Resolutions :

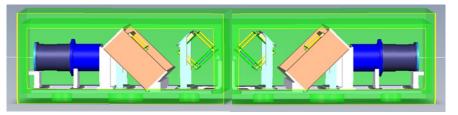
Energy : 1% Time : 150 ps Position : 1,5 mm

Detectors :

- Ionization chamber
- SED / MWPC

SETUP Simulation

GEANT4 SIMULATION

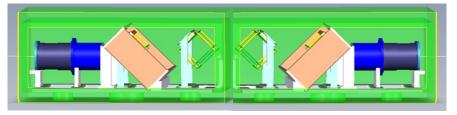

Simulation:

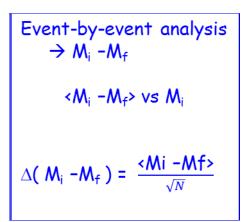
- Physics events from GEF: 252Cf(sf)
- Full two-arms geometry

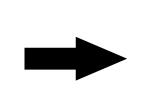
Precise material budget (energy losses, stragglings)

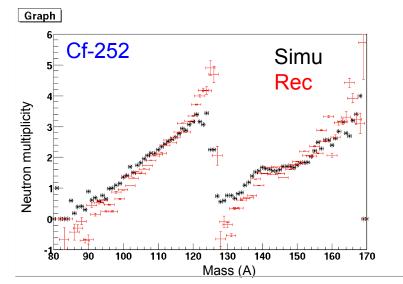
- Multistep analysis :
 - · Z known
- · Corrections for energy loss
- Mass reconstruction from simulated v and E

Energy : 1% Time : 150 ps Position : 1,5 mm


SETUP Simulation


GEANT4 SIMULATION

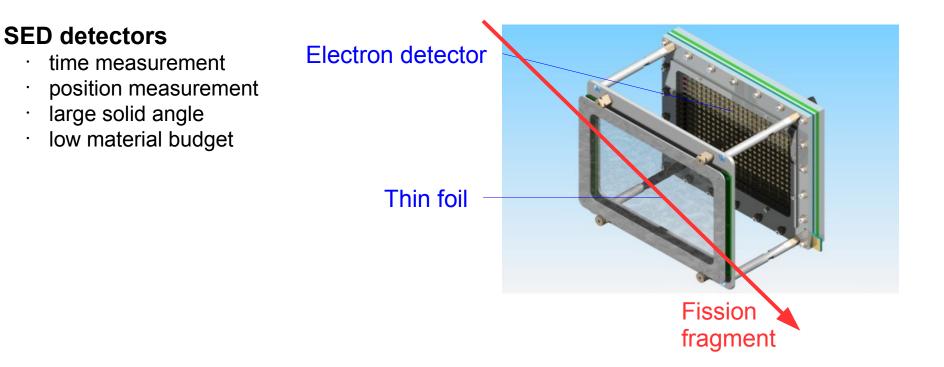

Simulation:


- Physics events from GEF: 252Cf(sf)
- Full two-arms geometry Precise material budget (energy losses, stragglings)
 - Multistep analysis :
 - · Z known
 - · Corrections for energy loss
- Mass reconstruction from simulated v and E

Energy : 1% Time : 150 ps Position : 1,5 mm

Proposed experimental setup able to provide good quality information

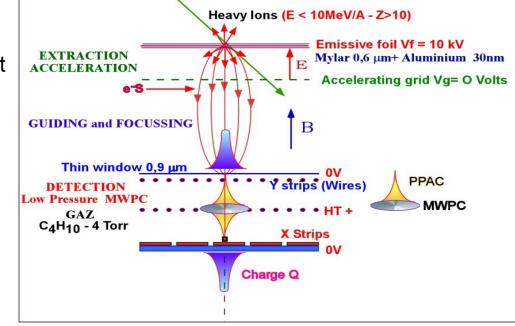
SED - MWPC


Cez

•

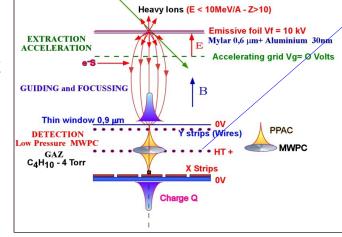
•

•


•

SED - MWPC

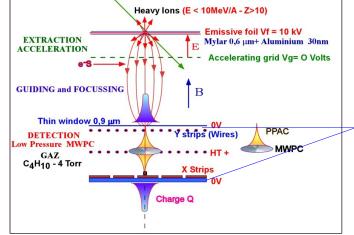
SED detectors


- · time measurement
- · position measurement
- · large solid angle
- · low material budget

SED - MWPC

SED detectors

- time measurement
- · position measurement
- · large solid angle
- · low material budget



Time information : - 1 Anode signal → HF Sampling with MATACQ (VME)

SED - MWPC

SED detectors

- time measurement
- · position measurement
- · large solid angle
- · low material budget

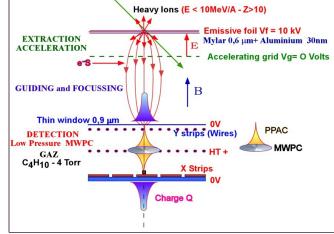
Time information :

- 1 Anode signal
→ HF Sampling with

MATACQ (VME)

Position information :

- **SED1** : 24 signals on 1D pixelized cathode + 26 signals on wires


- **SED2** : 48*68 signals on 2D pixelized cathode

 \rightarrow HF Sampling with homemade Asic (AFTER)

SED - MWPC

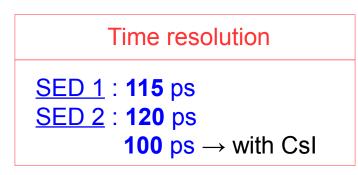
SED detectors

- time measurement
- · position measurement
- · large solid angle
- · low material budget

Time information :

- 1 Anode signal

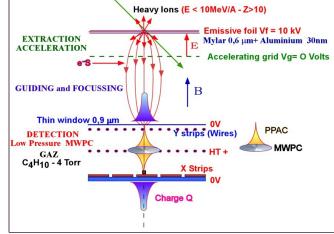
→ HF Sampling with MATACQ (VME)


Position information :

- **SED1** : 24 signals on 1D pixelized cathode + 26 signals on wires

- **SED2** : 48*68 signals on 2D pixelized cathode

 \rightarrow HF Sampling with homemade Asic (AFTER)


Performances :

SED - MWPC

SED detectors

- time measurement
- · position measurement
- · large solid angle
- low material budget

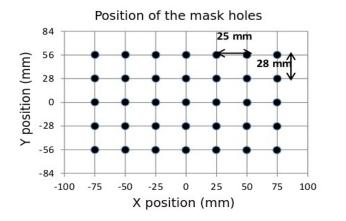
Time information :

- 1 Anode signal

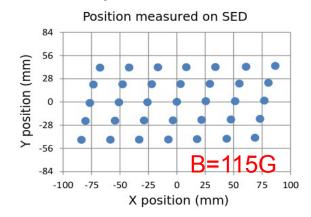
 \rightarrow HF Sampling with MATACQ (VME)

Position information :

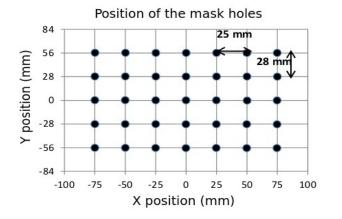
- **SED1** : 24 signals on 1D pixelized cathode + 26 signals on wires


- **SED2** : 48*68 signals on 2D pixelized cathode

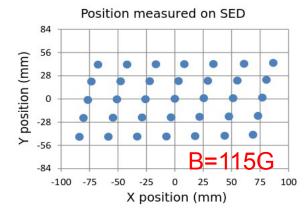
 \rightarrow HF Sampling with homemade Asic (AFTER)


Performances :

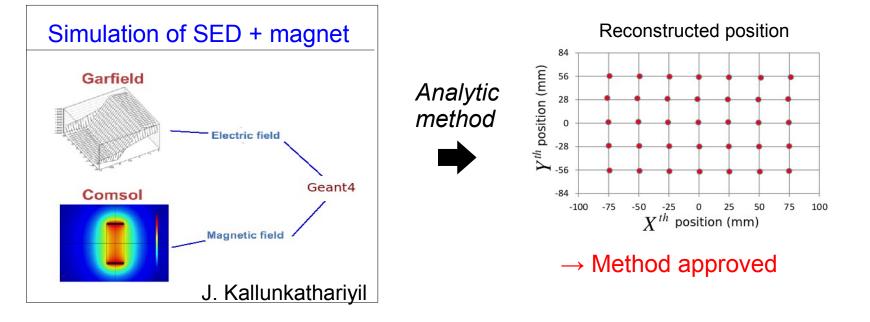
SED : position reconstruction



Shift of position due to B field



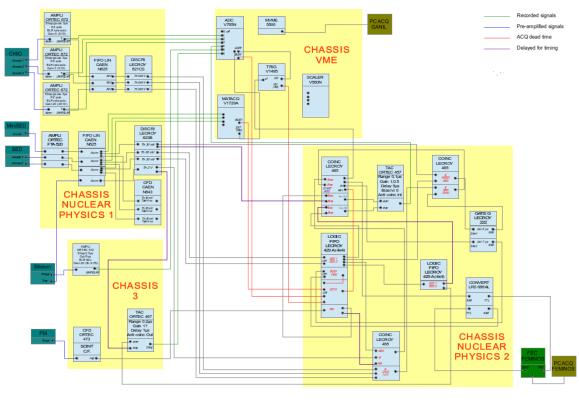
Shift up to 1.5 cm -> has to be corrected


SED : position reconstruction

Shift of position due to B field

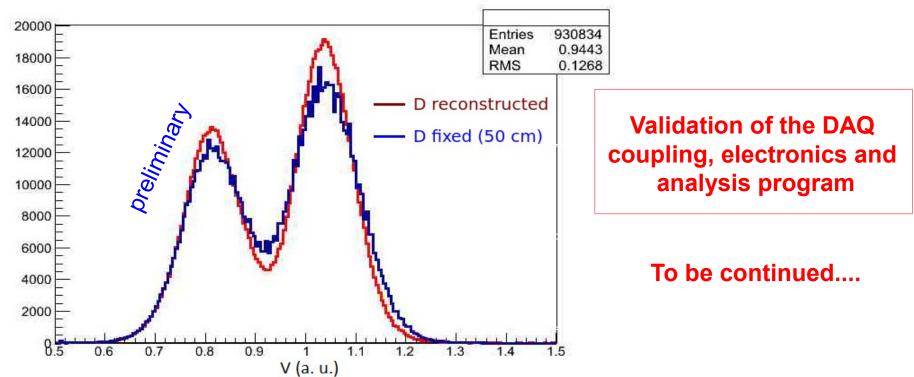
Shift up to 1.5 cm -> has to be corrected

07


Experimental DATA

DATA acquisition -> 2 different DAQ FEMINOS (positions) GANIL (time and energy)

- Electronic scheme (dead time, data timing of different detectors...)
- Analysis program to merge DATA


Experimental DATA

DATA acquisition -> 2 different DAQ FEMINOS (positions) GANIL (time and energy)

- Electronic scheme (dead time, data timing of different detectors...)
- Analysis program to merge DATA

Velocity spectrum 252Cf source with FALSTAFF

Conclusions

Needs of complete data for fundamental physics and applications \rightarrow FALSTAFF : (Z,A,Ek) including neutron multiplicities

- SED performances fulfill requirements
- Simulations demonstrate the feasibility
- Difficulties in coupling the 2 DAQ systems but
- Preliminary experimental data are promising

Perspectives

- On going construction of an axial IC (LPC@CAEN)
- Full characterization with 252Cf
- Experiments at NFS, Gelina, nELBE with actinide targets

PhD begins next week !

THANK YOU !