Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Self-consistent adiabatic description of the fission: automatic production of class-II PES

N. Dubray

CEA, DAM, DIF

FIESTA 2014

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Table of contents

Microscopic description of the fission

3 Problems with the self-consistency

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Table of contents

Microscopic description of the fission

2 3 Problems with the self-consistency

Microscopic description of the fission

Two-step approach :

Production of microscopic potential energy surfaces (PES)

- Hartree-Fock-Bogoliubov code using a two-center oscillator basis
- effective nucleon-nucleon interaction Gogny D1S
- N-dimensional PESs
- results : static properties of the fragments
- Wave packet propagation
 - TDGCM method with GOA
 - initial state : eigenstate of an extrapolated first well
 - microscopic inertia tensor (GCM)
 - results : statistic properties of the fragments

Formalism - HFB2CT

$$\delta \langle \varphi | \hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \sum_i \lambda_i \hat{Q}_{i0} | \varphi \rangle = 0$$

Constrained Hartree-Fock-Bogoliubov method:

- D1S Gogny parametrization
- self-consistent mean and pairing fields
- two-center harmonic oscillator basis

Constraints:

• neutron and proton numbers N et Z

$$egin{array}{rcl} \langle arphi | \hat{\pmb{N}} | arphi
angle &=& \pmb{N} \ \langle arphi | \hat{\pmb{Z}} | arphi
angle &=& \pmb{Z} \end{array}$$

- q₁₀ to avoid spurious center of mass motion
- multipolar moments q_{i0}

$$\langle arphi | \hat{oldsymbol{Q}}_{i0} | arphi
angle = oldsymbol{q}_{i0}$$

Formalism - TDGCM + GOA

General GCM state with N different degrees of freedom $\{q_1, \ldots, q_N\}$:

$$|\psi(t)\rangle \equiv \left(\prod_{i}^{N}\int dq_{i}\right)f(q_{1},\ldots,q_{N},t)|\phi(q_{1},\ldots,q_{N})\rangle$$

Variational principle:

$$rac{\partial}{\partial f^*}\int_{t_1}^{t_2} \langle \psi(t)|\left(\hat{H}-i\hbarrac{\partial}{\partial t}
ight)|\psi(t)
angle=0$$

Using the Gaussian Overlap Approximation (GOA), we obtain a Schrödinger-like equation:

$$\hat{H}_{\text{coll}}g(t) = i\hbar \frac{\partial}{\partial t}g(t)$$

with

$$\hat{H}_{\text{coll}} = -\frac{\hbar^2}{2} \sum_{i,j}^{N} \frac{\partial}{\partial q_i} B^{ij} \frac{\partial}{\partial q_j} + \hat{V}$$

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Results - PESs

N. Dubray et al., Phys. Rev. C 77, 014310 (2008).

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Results - PESs

N. Dubray et al., Phys. Rev. C 77, 014310 (2008).

Microscopic description of the fission ○○○○○●○ 3 Problems with the self-consistency

Toward class 3 PESs

Results - Fragment deformation $\langle \hat{Q}_{20} \rangle$

N. Dubray et al., Phys. Rev. C 77, 014310 (2008).

H. Goutte et al., Phys. Rev. C 71, 024316 (2005).

Table of contents

Microscopic description of the fission

2 3 Problems with the self-consistency

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	0000000	00	00

Problem 1 - Convergence

- Problem: the HFB solver does not converge to a solution.
- Consequence: the HFB solution is bad.
- Symptom: the convergence quantity is too high.

Problem 1 - Convergence

- Problem: the HFB solver does not converge to a solution.
- Consequence: the HFB solution is bad.
- Symptom: the convergence quantity is too high.

Problem 2 - Minimization

- Problem: the HFB solver converges to a local minimum.
- Consequence: the HFB solution is bad.
- Symptom: none at the time of calculation.

Problem 1 - Convergence

- Problem: the HFB solver does not converge to a solution.
- Consequence: the HFB solution is bad.
- Symptom: the convergence quantity is too high.

Problem 2 - Minimization

- Problem: the HFB solver converges to a local minimum.
- Consequence: the HFB solution is bad.
- Symptom: none at the time of calculation.

Problem 3 - Discontinuity

- Problem: two solutions close in the constraint deformation subspace are not close in the full deformation space.
- Consequence: a dynamic description using these points is missing a part of the physics (wrong barrier, saddle point, ...).
- Symptom: none easily visible.

а

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

PES classes

Class	Convergence	Minimization	Discontinuity
0	problem ?	problem ?	problem ?
1	OK	problem ?	problem ?
2	OK	OK	problem ?
3	OK	OK	OK

The density-distance operator

We define the density-distance operator

$$\mathcal{D}_{
ho
ho^{\prime}}(\ket{\psi},\ket{\psi^{\prime}})\equiv\int\mathrm{d} au^{3}ert
ho(ec{r})-
ho^{\prime}(ec{r})ec{r})ec{r}$$

where $\rho(\vec{r})$ and $\rho'(\vec{r})$ are the total local densities of the states $|\psi\rangle$ and $|\psi'\rangle$.

4-lines long algorithm to clean a PES

- all solutions with a too high convergence value are marked as "bad",
- all solutions with a too high maximum density distance value AND with their energy being higher than the corresponding partner's energy are marked as "bad",
- all solutions marked as "bad" are recalculated from the neighboring solution with the lowest energy that has not been used for the same calculation before,
- recalculate the density distances and restart.

- this algorithm can be used during or after the production of a *N*-dimensional PES.
- if there is no fatal convergence problem and if all valleys have been discovered, the result is at least a class 2 PES.

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions 00

Important remark

We call a final point a solution that does not change when taking a bigger deformation subspace with the same symmetries.

If there has been no fatal convergence problem and if all valleys have been discovered,

- a class 2 PES can have wrong or missing saddle points,
- a class 3 PES has only final points (minima, saddle points, etc...).

N. Dubray and D. Regnier, Comp. Phys. Comm. 183, 2035 (2012)

Realistic example of automatic production

- 1- and 2-center PESs for ²⁴⁰Pu.
- fully automatic production.
- class 2 PES enforced.
- basis-distance used in conjunction with density-distance.

Microscopic description of the fission

3 Problems with the self-consistency

Toward class 3 PESs

1-center PES of ²⁴⁰Pu - class 2 / 3?

3 Problems with the self-consistency

Toward class 3 PESs

2-center PES of ²⁴⁰Pu - class 2 / 3?

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Table of contents

Microscopic description of the fission

2 3 Problems with the self-consistency

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	• •	00

Class 3 PESs

Continuous regular mesh ?

- dimension of a class 3 PES: N = 1, 2, 3, 4, 5, 6, ... ?
- regular mesh + hypercube + N > 2 = huge number of points N_p
- dimension of the TDGCM + GOA hamiltonian matrix: N²_p

Use a sparse mesh !

- no hypercube, focus on the physics in any dimension
- optimal number of points
- solve the TDGCM + GOA equation with FEM

Microscopic description of the fission

3 Problems with the self-consistency

Class 3 PES (q_{20}, q_{30}, q_{40}) for ²⁴⁰Pu

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
000000	00000000	00	00

Table of contents

Microscopic description of the fission

2 3 Problems with the self-consistency

Microscopic description of the fission	3 Problems with the self-consistency	Toward class 3 PESs	Conclusions
0000000	00000000	00	•0

Conclusions

- Producing class 2 PESs is easy and can be automatic.
- Class 0,1,2 PESs can have non-final points.
- A class 3 *N*-dimensional PES has the same saddle points, paths... as any extended (N + x)-PES (since all points are final points).

Perspectives - fission description

In a near future, we plan to have

- a fully-automatic production of class 3 sparse N-PESs,
- a code to solve the TDGCM + GOA equation on sparse N-PESs with FEM (cf. talk by D. Regnier).

Next step: find the lowest *N* value for a given class 3 *N*-PES.

