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Fission Neutron Spectroscopy 
•  Methods of Fission Detection 

•  Fission Chamber (Chi Nu at LANL1) 
•  Advantages - High Efficiency 
•  Disadvantages - Very Thin Samples 

•  Gamma Tagging 
•  Advantages 

•  Does not require complicated multiplate fission chamber 
•  Much larger sample sizes 

•  Disadvantages 
•  Reduced fission detection efficiency (compensated by large sample size) 
•  Sources of false coincidence 

•  Neutron Detection 
•  High Energy Detectors – EJ301 Liquid Scintillator (Measurments down to 0.5 MeV) 
•  Low Energy Detectors 

•  EJ204 Plastic Scintillator (High efficiency, no gamma discrimination) 
•  6Li Glass Detector (Low efficiency, minimal gamma contamination) 

1Robert C Haight, et al. “Progress in the Measurement of Prompt Neutron Output in Neutron-Induced Fission 
of 239Pu: The Chi-Nu Project”, LA-UR-12-25233 (2012) 

 
3 



Gamma Tagging Method 
•  Utilizes fission gamma 

multiplicity to determine if a 
fission event has occurred 

•  Coincidence requirement on 
an array of BaF2 gamma 
detectors 

•  Sources of false coincidence 
•  Capture (Gamma 

detector number and 
size have been optimized 
to reduce this) 

•  Radioactive Decay 
(Energy threshold has 
been set to reduce this) 

•  Inelastic Scattering 
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Prompt Fission Gamma Average 
Parameters 
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Isotope Total energy (MeV) Average number Average energy 
(MeV) 

Reference 

233U 6.69±0.3 6.31±0.3 1.06±0.07 Pleasonton (1973) 

235U 6.43±0.3 6.51±0.3 0.99±0.09 Pleasonton et al. (1972) 

6.70±0.4 6.69±0.3 0.97±0.05 Verbinski et al. (1973) 

7.2±0.3 7.45±0.32 0.96±0.05 Pelle and Maienschein (1971) 

6.53±0.2 6.60±0.2 0.97±0.04 Average 

239Pu 6.73±0.35 6.88±0.35 0.98±0.07 Pleasonton (1973) 

6.82±0.3 7.23±0.3 0.94±0.05 Verbinski et al. (1973) 

6.78±0.2 7.06±0.2 0.95±0.04 Average 

252Cf 7.06±0.35 8.32±0.4 0.85±0.06 Pleasonton et al. (1972) 

6.84±0.3 7.80±0.3 0.88±0.04 Verbinski et al. (1973) 

8.6 10 0.90±0.06 Bowman and Thompson (1958) 

6.7±0.4 n/a n/a Nardi et al. (1973) 

n/a 7.5±1.5 0.96±0.08 Val’skii et al. (1969) 

6.95±0.2 7.98±0.2 0.87±0.03 Average 



Valid Fission Selection Criteria 
•  Coincidence of at least 2 on an array of 4 BaF2 

detectors 
•  300 keV Energy threshold on each gamma 

detector 
•  Neutron event occurring on at least 1 of 3 

neutron detectors  
•  Time between gamma and neutron events less 

than 600 ns 
•  Simulated fission detection efficiency 36.8% 

•  False detection probability 3.9% (mostly from 
capture) 

•  Correction for false detection will be implemented in final 
analysis 
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Experimental Setup 

Sample 
Position  

EJ-301 
Detectors 

Gamma 
Detecrors 

EJ-204 
Detector 
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Neutron/Gamma Detectors 
•  Neutron Detectors 

•  1 EJ-204 Plastic Scintillator 
•  0.5” thick x 5” diam. 
•  48 cm away from center of sample 

•  2 EJ-301 Liquid Scintillators  
•  3” thick x 5” diam. 
•  50 cm away from center of sample 

•  Gamma Detectors 
•  4 BaF2 detectors on loan from ORNL 

•  Hexagonal detectors 2” x 5” thick 
•  10 cm from sample center 
•  ¼” lead shield between detectors reducing scattering 

between detectors 
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Digital Data Acquisition 
•  PCI Chasis Extention 

•  4 Acqiris AP240 DAQ boards 

•  (2 channels per board) 

•  Computer controlled power supply 
•  Chassis - SY 3527 

•  Board - A1733N 

•  1 Gsample/sec acquisition rate 
giving 1 ns timing resolution 

•  125k events/sec acquisition rate 
allows for coincidence analysis in  
post processing 
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Lemo	  Signal	  Connector	  

Teflon	  Spacer	  

Anode	  Plate	  

Cathode	  Plate	  

Gas	  Fill	  Line	  

Fission Chamber 
•  Parallel Plate Fission Chamber 
     designed at RPI 
•  2 mm plate spacing allowing for fast 
     timing response 
•  Methane fill gas at 1 atm 

•  20 ng 252Cf sample obtained from ORNL 
•  Deposited onto sample plate through  
     stippling 25 depositions of 2 µL 
•  1” final spot size of deposition 
•  87% final deposition (~17.4ng) 

252Cf sample mixed with HCl evaporating on hotplate 
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System Timing Resolution  
•  The timing resolution with the 60Co source was taken with 2 EJ-301 detectors 
•  The timing resolution for the prompt gamma peak is the time between the BaF2 

 detectors and the EJ-301 detectors 
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Background Considerations 
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•  Three sources of background 
•  Time independent background (random coincidence, neutrons and gammas) 
•  Time dependent neutron background (neutron scattering) 
•  Time dependent gamma background (neutron scattering, prompt fission neutrons) 
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Comparison to Simulation 
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An MCNP Polimi simulation was performed and the PFNS for spontaneous fission 
of 252Cf was compared with experiment. The simulation used the PFNS from the 
Manhart evaluation. A Gaussian time distribution was used to simulate the detector 
time response 
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252Cf Prompt Fission Neutron 
Spectrum High Energy 

•  High Energy spectrum 
taken with EJ-301 
liquid scintillator 

•  The gamma tagging 
method shows good 
agreement to ENDF VII 
in the energy range 
from 0.7 MeV to 7.8 
MeV 

•  Uncertainties include 
statistical, background 
correction and 
efficiency 
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252Cf Prompt Fission Neutron 
Spectrum Low Energy 

•  Low energy data taken 
with 0.5” EJ-204 plastic 
scintillator 

•  RPI data shows good 
agreement to Lajtai 
data and ENDF 
evaluation 

•  Thin plastic detector 
allows for measurement 
down to 50 keV 

•  Gamma tagging method 
accurately reproduces 
PFNS for 252Cf 

•  Only stastical error 
shown for RPI data 
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238U Experimental Setup 
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•  Neutrons generated from 60 MeV LINAC (white 
neutron source) 

•  30.07 m flight path from neutron source to fission 
sample 

•  Double time-of-flight setup allows for 
simultaneous measurement of PFNS for several 
incident neutron energy ranges 

•  1 EJ-301 detector, 3 EJ-204 detectors 
simultaneously measure high energy and low 
energy portion of PFNS 

•  3/8” thick 238U disc used for sample (highlights 
benefits of larger sample with gamma tagging 
method) 

Gamma Detectors 
Neutron Detectors 

238U Fission sample 

LINAC 

Neutron flight path 
L1 = 30.07 m 

L2 = 0.5 m 

Electron beam 
Neutron producing target 



238U Prompt Fission Neutron 
Spectrum High Energy 

•  Spectrum is normalized to 
ENDF at 1.2 MeV 

•  Spectrum is integrated over 
all incident time-of-flights 

•  Preliminary data shows 
good agreement with 
current evaluations 

•  Increase near 1 MeV agrees 
with new data by Sardet et. 
al. 
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Sources of Uncertainty 

•  Statistical uncertainty 
•  Uncertainty in timing (system resolution of 1.2ns) 
•  Uncertainty in flight-path (0.5” thick detector for EJ-204 

3” thick detector  for EJ-301) 
•  False coincidence events 

•  Primarily caused by inelastic scattering from neutron 
beam experiments 

•  Uncertainty in the energy dependence of the neutron 
detection efficiency 

•  In-beam experiments with neutron detectors were 
used to determine efficiency uncertainty 
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Conclusions 

•  The gamma tagging method has been shown 
to accurately reproduce the 252Cf PFNS in 
the range from 50 keV  to 7 MeV 

•  The gamma tagging method allows for more 
accurate timing resolution compared to 
fission chambers 

•  Thin plastic detectors have allowed for the 
measurement of the PFNS down to 50 keV 
neutron energy. 
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Future Work 
•  Determine total false coincidence rates using MCNP Polimi 

code 
•  Measure low energy fission spectrum for 238U 
•  Develop methodology to correct for false fission 

contamination 
•  Use MCNP Polimi to determine different non-fissioning materials 

which can be used to simulate scattering contribution e.g. Pb  
•  Determine if sub-threshold data can be used to correct inelastic 

scattering contribution from 238U 
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