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Why a new approach?

--Incorporate diffusive dynamics in the computational framework.
                      J. Randrup and P. Moller, Phys. Rev. Lett. 106 12305

--Computations are easier in discrete bases and implementation of
      continuum approaches rely on discrete configurations. 
       R. Bernard, H. Goutte, D. Gogny, and W. Younes, Phys, Rev. C 84 044308

--There is data that is incompatible with the present computational 
      approach.
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FIG. 16. Average spin-3 fission width for ( U+g)
from 0.1 to 25 keV obtained from the unresolved re-
sonance analysis described in the text. The curve has
no theoretical significance; it is simply the authors
eye guide.

FIG. 17. Average spin-4 fission width for ( U+g)
from 0.1 to 25 keV obtained from the unresolved re-
sonance analysis described in the text. The curve has
no theore. tical significance; it is simply the authors
eyeguide .

structure in ('"U+n) in this region. ' ' It also may
be noted that the initial guess that (I ~), is con-
stant and equal to 0.180 eV never fails to give a
reasonable solution for the other three parame-
ters.
To complete these studies, we allowed (I'f)„or

any of the parameters that failed to give q. solu-
tion, to va.ry by one standard deviation 9om the
resolved-resonance average, repeating this until
a solution consistent with the data could be found.
The resulting average fission widths and neutron
strength functions obtained are listed in Table
VI and the fission widths are plotted in Figs. 16
and 17. The uncertainties in Figs. 16 and 1V are
those which arise from the statistical uncertain-
ties in the spin-separated fission cross sections;
the smooth curves are eye guides drawn to show
the significant structure.
No uncertainties are listed in Table VI. The set

of values shown is only one of many that could be
obtained; in particular, it is the one which is most
nearly consistent with the resolved-resonance av-
erages. The four solutions that were averaged to
obtain the results shown in Table VI have one
striking common feature: They aQ reproduce the
structure in (I'z), shown in Fig. 17. This is true
even for the solution in which (I"~), was set equal
to 0.091 eV; the convergence failures force (I'z),
above the value and qualitatively describe the
structure.
Other solutions were also investigated, with

somewhat different constraints. All the solutions
studied have the same common feature: The rela-
tive fluctuations in the four parameters listed in
Table VI are reproduced, although the magnitudes
are different.

The r&.suits of these studies can be summarized
as follovvs: The data are clearly not consistent
with a constant value of (I'z), as inferred from the
resolved resonances, or with the small variation
(-10-15/q) expected from Porter- Thomas fluctua-
tions in two or three open fission channels. If
(I"~), is allowed to vary, then its variation is found
to be qualitatively consistent with that shown jn
Fig. 17,. The fluctuations in (I'z), are not small and
not randomly distributed, and they are quite con-
sistent with the conclusions reached, for example,
by Migvteco et a/. ' in their study of intermediate
structure. e in '"U fission: The average spacing is
betweeI', I. 0.5 and 1.0 keV, and the effects are readi-
ly seen with bin widths of 100 to 500 eV. Figure
16 is strongly suggestive that intermediate struc-
ture is also present in the spin-3 component. It
must be emphasized, however, that the data can
also be interpreted as being consistent with the
a,ssumption that the spin-3 average fission widths
are nearly constant, with an average value given
by that observed for the resolved resonances. The
present work definitely confirms the existence of
intermediate structure in the fission widths only
for the spin-4 component.
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U-235+n ---> fission;   E_B = 5.67 MeV,    S_n = 6.55 MeV
Moore, et al.,  Phys. Rev. C18 1328 (1978)
Moore, et al.,  Phys. Rev. C30, 214 (1980)
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unrestricted Skyrme DFT solver HFODD [25]. We use a basis
that employs the lowest 1140 stretched deformed harmonic
oscillator states originating from 31 major shells. Our previous
studies (see, e.g., Ref. [24] and references therein) indicate that
this basis size represents a good compromise between accuracy
and computation time.

We constrain the quadrupole moment Q20 and the octupole
moment Q30 with the augmented Lagrangian method to obtain
the PES [26]. To obtain smooth PESs, we use cubic spline
interpolation. To construct one-dimensional least-energy path-
ways, we have taken two approaches: The first approach
was to initially constrain Q20 along the pathway as well
as Q30 at some nonzero number—through examination of
the two-dimensional PESs, we found a value of 10 b3/2 to
be sufficient for the nuclei studied. We would then release
the Q30 constraint, allowing the pathway to fall into the
least-energy trajectory. The second approach was to directly
scan the two-dimensional PESs. For each value of Q20, we
would scan in the Q30 direction for the least-energy point.
The locus of these points formed the least-energy pathway. In
addition, we sought alternative fission pathways (either more
or less symmetry breaking) by restricting the scan to a subset
of Q30 values. Both approaches led to least-energy pathways
in excellent agreement with each other.

The finite-temperature DFT equations are obtained from
the minimization of the grand canonical potential, so that the
free energy F = E − T S is formally calculated at a fixed
temperature T . Since the system is not in contact with a heat
bath, the fission process is not isothermal. However, since the
large-amplitude collective motion during fission is slower than
the single-particle motion, it is reasonable to treat fission as
an adiabatic, isentropic process [21,27]. This assumption has
been found to be valid up to about E∗/A ≈ 1 MeV [28] or
kT ≈ 2 MeV [29]—our highest-temperature calculations do
not exceed kT = 1.5 MeV.

We calculate the free energy for a fixed temperature as
a function of the collective coordinates, understanding that
relative quantities such as barrier heights identically match
those obtained from a calculation of internal energy at fixed
entropy [21,29,30]. This Maxwell relation has been verified
numerically in the self-consistent calculations of Ref. [21].

We map the excitation energy of the nucleus E∗ to the fixed
temperature T via

E∗ (T ) = Eg.s. (T ) − Eg.s. (T = 0) , (1)

where Eg.s.(T ) is the minimum energy of the nucleus at
temperature T . This corresponds well to the excitation energy
of a compound nucleus [21,22]. To study shell effects in
pre-scission configurations, we calculate the shell-correction
energies δEsh at T = 0 according to the procedure described
in Refs. [31,32] with the smoothing width parameters γp =
1.66, γn = 1.54 (in units of !ω0 = 41/A1/3 MeV) and the
curvature correction p = 10.

The nuclear interaction in the particle-hole channel has
been approximated through the SkM∗ parametrization [33]
of the Skyrme energy density functional. This traditional
functional achieves realistic surface properties in the actinides,
allowing a good description of the evolution of the energy
with deformation [8,14]. In the particle-particle channel, we

FIG. 1. (Color online) Ground-state potential-energy surfaces
for (a) 180Hg and (b) 198Hg in the (Q20,Q30) plane calculated
in HFB-SkM∗. The static fission pathway aEF corresponding to
asymmetric elongated fragments is marked.

use the density-dependent mixed-pairing interaction [34]. All
calculations were performed with a quasiparticle cutoff energy
Ecut = 60 MeV. The pairing strengths Vτ0 (τ = n,p) are
chosen to fit the pairing gaps determined from experimental
odd-even mass differences in 180Hg [35]. For the SkM∗ EDF,
the pairing strengths are Vn0 = −268.9 MeV and Vp0 =
−332.5 MeV.

In this work, we have chosen to focus our attention on
the effect that internal excitation energy has on mass yield.
We do not consider the sharing of projectile energy between
nuclear excitation and nuclear rotation. While the earlier
experiments with projectiles would involve a great deal of
angular momentum imparted to the fissioning nucleus, the
more recent experiments with β-delayed fission achieve a low
angular momentum for the fissioning nucleus.

Results. To recall the global features of the PESs predicted
with HFB-SkM∗ in the Hg region [14], in Fig. 1 we show
the results for 180Hg and 198Hg at zero temperature. This
exploration of a very large configuration space illustrates the
static fission paths available to each nuclide. In both cases, the
reflection-asymmetric path corresponding to elongated fission
fragments (aEF) branches away from the symmetric valley to
ultimately pass through the mass-asymmetric scission point.
For 180Hg, a steep ridge separating the path aEF from the
fusion valley at Q20 ≈ 175 b can be seen. The 100Ru-80Kr
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The Hamiltonian

In the next two sections we will propose parameterizations of the configurations and the

interactions that derive from general features of mean-field Hamiltonians and their two-body

matrix elements. These will be applied over a broad range of parameters to explore how the

decay characteristics depends on the Hamiltonian.

II. MODELING THE DIAGONAL HAMILTONIAN

We assume that we can construct a basis of configurations, each configuration i charac-

terized by its energy Ei and the expectation value of an operator associated with a measure

of the nuclear shape, qi = 〈i|Q̂|i〉. The spectrum is specified by its density in those variables

ρ(q, E) =
∑

i

δ(q − qi)δ(E − Ei). (2)

The fermionic statistics implies a rapid growth of ρ in E. According to Bethe’s formula for

the level density this would be ρ(E) ∼ exp((aE)1/2). However, it may be that the dependence

at lower excitation energies is better fit by a ”constant temperature” formula[6], ρ(E) ∼

exp(−βE), with β a constant, and we will use that form here. It should be emphasized that

β is just a parameter; it has no role as an inverse temperature.

To model the dependence of ρ on q, we are guided by the potential energy surfaces (PES’s)

that are computed for the lowest energy configurations at fixed deformation. We will assume

the existence of a PES V0(q) and take E = V0(q) as the base of the exponentially growing

level density at that point q.

So our parameterization is

ρ(q, E) = ρ0 exp(β(E − V0(q))). (3)

The parameter ρ0 in Eq. (3) is in fact superfluous: it can be subsumed in V0 as an additive

constant T log(ρ0). We will construct an ensemble of configuration spaces choosing states

randomly in q and E according to the above density function. This ignores the well-known

level repulsion between states of random matrix theory, but we defer to a later publication

the consideration of its effects.

4

Level density:

Definition
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Off-diagonal interaction:should have a limit range with respect to shape changes:

〈i|v|j〉2 = v20e
−(qi−qj)2/2q20

(Ei + Ej)3/2

(ρ(Ei)ρ(Ej))1/2
(6)

IV. SIMPLE LIMITS

In this section we show how the discrete-basis model reproduces two simple limits. The

first one is the decay of compound nucleus into a single discrete channel. The second is the

decay by diffusion along the shape coordinate.

A. Channel Limit

To model a decay channel in a discrete base we take the Hamiltonian to be a one-

dimensional chain of sites coupled by nearest-neighbor interactions,

H = vw

∞∑

i=1

(a†iai+1 + a†i+1ai) (7)

where i enumerates the site of the chain and vw is the strength of the interaction. The

spectrum of the chain is characterized by a momentum k with energies

Ek = 2vw cos(k). (8)

and wave functions

φk(n) = e−ikn − eikn. (9)

Constructed this way, the channel has a bandwidth 4vw and an effective mass near the

bottom of the band given by

m =
1

2vw
. (10)

A single state of energy Ec coupled to site 1 by an interaction vc has a decay width into the

chain given by

Γc = 2
v2c
vw

sin kc (11)

where kc satisfies Eq. (8) for Ek = Ec.

The simpliest model of a compound nucleus decaying into a single channel can be modelled

by taking a large number of states individually coupled to site 1 , as shown in Fig. 2. The

configurations shown as blue circles form the exit-channel chain, while the configurations
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Fit to a power law 

M ~ E**1.51



Channel physics in the discrete basis 

Red dots:  compound nucleus states
Blue dots:  channel states 



Where is the point of no return?

R-matrix answer:   at the top of the outer barrier

My answer:   when the local level density exceeds   rho_I

Verified by numerical experiments.



When does the dynamics become diffusive?

∂P

∂t
= D

∂2P

∂q2
. (1)

The diffusion coefficent D is given by

D(qi, Ei) = 2π!
∑

j

(qi − qj)
2〈i|v|j〉2δ(Ei −Ej) (2)

The control parameter determining the proximity to the diffusive limit is

α = q0ρ0v0 (3)

1

See  B.W. Bush, G.F. Bertsch, and B.A. Brown, Phys. Rev. C 45 1709 (1992)



Connection to mesoscopic physics

C = R−1 =
e2

2π�
�

c

Tc

The Landauer formula for conductance

Derived from the Bohr-Wheeler formula:
J. Phys. Cond. Mat. 3 373 (1991)

Quantum-dot-mediated conductance 

For 75 years the theory of nuclear fission has been based on the existence of a

collective coordinate associated with the nuclear shape, an assumption required

by the Bohr-Wheeler formula as well as by the R-matrix theory of fission. We

show that it is also possible to formulate the theory without the help of col-

lective coordinates. In the new formulation, fission is facilitated by individual

states in the barrier region rather than channels over the barrier. In a certain

limit the theory reduces to a formula closely related to the formula for elec-

tronic conductance through resonant tunneling states. In contrast, conduction

through channels gives rise to a staircase excitation function that is well-known

in nanoscale electronics but has never been seen in nuclear fission.

The theory of induced nuclear fission began with Bohr and Wheeler’s landmark paper[1,

Eq. (31)] that introduced the transition-channel formula for the fission decay rate W ,

W =
1

2π�ρI

�

c

Tc. (1)

Here ρI is the level density of the compound nucleus. The Tc are the transmission coefficients

of the channels and satisfy the condition 0 < Tc < 1. The unit bound on the single-channel

transmission coefficient is an important aspect of the theory, derived from detailed balance.

In the Bohr-Wheeler theory the channel concept is applied at the barrier top which is

far from the asymptotic region where the channels can be rigorously derived. There is

an alternate formalism, the R-matrix theory, which forms the scaffolding of present-day

phenomenological parameterization of reactions leading to fission[2–4]. This theory is also

based on the channel concept, but there are no computational tools to calculate its basic

ingredients such as the logarithmic derivative of the wave function [2, cf. p. 760]. The

hallmark of well-developed channel physics is the staircase excitation function, increasing

by one step as each new channel opens up. This is by now a well-known feature of quantum

conductance, eg., see Ref. [5], but conditions at the nuclear fission barrier are such such as

to obscure it from being visible in the excitation function. Finally, we mention that there is

a new appreciation of importance of diffusive dynamics in nuclear fission[12]; here channels

play no role at all.

Besides the conductance through channels, there is another well-known limit of electron

transport in which the electrons pass from one conductor to another through an intermediate

resonance, which we shall call a “bridge state”. . The formula for conductance is equivalent

2

1.0

0.5

0.3
 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6

P L

t/t0

FIG. 4: Squares show the survival probability in the left-hand reservoir averaged over the random

ensemble of Hamiltonians, including the random distribution of couplings to the bridge state. Eq.

(6) is shown as the solid line.

ing the coupling strengths vbL to be Gaussian distributed with variance �v2bL� = v20. The

expected average survival probability is then given by

P (t) =
1

(2πv0)1/2

� ∞

−∞
dve−v2/2v20−2πv2ρI t =

1

(1 + 2Γ0t)1/2
. (6)

Fig. 4 shows the computed P (t) as black dots, taking parameters such than Tb = 1. It

agrees very well with Eq. (6), shown as the solid line in the Figure. For these parameters,

Γ0 = 1/2πρI .

Absent many-body calculations of properties of the bridge states, one can still see if

proposed framework can give acceptable fits to parameterize experimental data. There is

very detailed data on the fission widths of compound nucleus states of 236U just above the

neutron threshold[14–16] that we can try to fit. Assuming a set of independent bridge states,

the rate formula is identical to Eq. (1) but with the sum over channels replaced by a sum

over bridge states:
�

c

Tc →
�

b

ΓbRΓbL

E2
b + (ΓbR + ΓbL)2/4

(7)

The information available comprise the energies, angular momentum, and fission widths of

the individual levels of compound nucleus in a narrow energy window[15]. The level density

ρI , and average fission width Γf obtained by Ref. [15] are given in Table I. The extracted
�

T is shown in the last column. In principle, both could be attributed to a single bridge

state at resonance. However, the fluctuations in the individual fission width would be much

larger than observed if that were the case. On an energy scale of several keV, variations
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5

strength were large enough would allow the linked states
to act as channels. However, nuclear pairing is rather
weak and is easy blocked in excited states. For that rea-
son, the discrete basis picture seems closer to the physical
reality than the channel picture.
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